
Reversing Golang Binaries with Ghidra

VB2021 localhost
October 2021

Dorka Palotay

Senior Threat Researcher, CUJO AI

Albert Zsigovits

Threat Researcher, CUJO AI

Who are we
Background

Albert Zsigovits (@albertzsigovits):
• Threat Researcher @ CUJO AI
• Traditional blue team background
• Top 32 Influential Malware Research Professional 2019
• Memory forensicator, malware analyst and reverse engineer
• Former speaker at SEC-T and Disobey.Fi

Dorka Palotay (@pad0rka):
• Senior Threat Researcher at CUJO AI
• BSc in Applied Mathematics
• MSc in Security and Privacy – Advanced Cryptography
• Worked at financial and security companies as well
• Malware researcher and reverse engineer

Why we did all this
The quest

Background:

• IoT malware research -> more and more (IoT) malware families are written in Go

Issue:

• Reverse engineering Go binaries is challenging
o Huge file size

o Unusual string handling
o No symbol names due to stripping

• Ghidra open-source development is in early stage compared to other tools
o Only a few open-source scripts are available, solving only parts of the problem

Goal:
• Making reverse engineering Go binaries with Ghidra easier

Steps:

• Understand Go and the differences from usual languages
• Get familiar with Ghidra’s features (In this research we used Ghidra 9.1 and 9.2.3 versions.)

• Create our own scripts: https://github.com/getCUJO/ThreatIntel

https://github.com/getCUJO/ThreatIntel

Golang
Introduction

• Go (also called Golang) is an open source programming language

• Designed by Google in 2007

• Made available to the public in 2012
• Current version is Go 1.16 (in this research we used Go versions up to 1.15)

• https://golang.org/

• Go comes out top of the languages most developers want to learn1

• Advantages:

o Simple and clear documentation
o Easy to learn, ease of coding

o Compiled language (faster than Python)

o Cross compiling (Windows, Linux, macOS)
o Scalability and concurrency
o Garbage collection – automatic memory management

1: https://www.zdnet.com/article/developers-say-googles-go-is-most-sought-after-programming-language-of-2020/

https://golang.org/
https://www.zdnet.com/article/developers-say-googles-go-is-most-sought-after-programming-language-of-2020/

Static linking
Big Bad Binaries

• Go binaries are statically linked by default

• All the necessary libraries are included in the executable image

• No dependency issues
• Large size

o Difficult malware distribution
o Anti – virus products have difficulty to detect

o Reverse engineering can be more time consuming

Hello World - Unstripped
C vs Go

• C

• Go

gcc -o world_c world.c

go build -o world_go world.go

ELF 64-bit LSB shared object,

x86-64, version 1 (SYSV),

dynamically linked,
not stripped

size: 16,3 kB

ELF 64-bit LSB executable,

x86-64, version 1 (SYSV),

statically linked,
not stripped

size: 2,0 MB

Hello World in Ghidra
C vs Go

19 functions vs 1790 functionsBinaries: world_c, world_go

Stripped Binaries

• Discard debugging symbols

• Reduced size

• No names for routines and variables
• More difficult debugging and reverse engineering

• Malware files are usually stripped

Hello World - Stripped
C vs Go

• C

• Go

gcc -o world_c_strip -s world.c

go build -o world_go_strip –ldflags

“-s” world.go

ELF 64-bit LSB shared object,

x86-64, version 1 (SYSV),

dynamically linked,
stripped

size: 14,1 kB

ELF 64-bit LSB executable,

x86-64, version 1 (SYSV),

statically linked,
stripped

size: 1,3 MB

Hello World Stripped in Ghidra
C vs Go

19 functions vs 1138 functionsBinaries: world_c_strip, world_go_strip

Recover function names
strings

Binaries: world_c, world_go, world_c_strip, world_go_strip

Recover function names
pclntab

Binary: world_go_strip

Recover function names
pclntab

• Detailed documentation of pclntab1 is available

Instruction size quantum:

1: X86, 4: ARM
Pointer size in bytes

Function metadata pointers

Function address

1: https://docs.google.com/document/d/1lyPIbmsYbXnpNj57a261hgOYVpNRcgydurVQIyZOz_o/pub

Recover function names
pclntab in Windows

• Not a separate section -> Look for the structure

Binary: world_go_strip.exe

Recover function names
pclntab

• Function metadata

Function name offset

0x4df7a0 + 0x5e6a8 = 0x53DE48

Recover function names
Idea

Function name recovery steps:

• Locate pclntab structure
• Extract function addresses
• Find function name offsets

Binary: world_go_strip

0x4df7a0 + 0x5e708 = 0x53DEA8

Recover function names
Executing our script

Binary: world_go_strip

Recover function names
Real world example – eCh0raix

Binary: eCh0raix – x86

Recover function names
Challenges

• Undefined function name strings

Binary: eCh0raix – x86

Hello World Strings in Ghidra
C vs Go

70 defined strings vs 6544 defined stringsBinaries: world_c, world_go

Hello World Strings in Ghidra
C vs Go

No “Hello” in Go
Binaries: world_c, world_go

Hello World Strings
C vs Go

C:

“Hello, World!” is easy to find

Go:
“Hello, World!” is part of a huge string

Binaries: world_c, world_go_println

String Representation
C vs Go

C

• sequence of characters terminated with a null character

Go

• sequence of bytes with a fixed length
• not null terminated

• str – sequence of bytes
• len – number of bytes

• https://golang.org/src/runtime/string.go
• Large string blobs from concatenated strings until

null character

• Ghidra has a hard time defining strings in Go binaries

Idea: help Ghidra to find string structures
• Static vs dynamic allocation

• Per architecture (different instruction set)
• Multiple solution within one architecture

• Possible changes per Go version

https://golang.org/src/runtime/string.go

Dynamically allocated string structure
x86

• String structures can be allocated runtime

• Several different scenarios

• Let’s look at the Hello World examples again

Binary: world_c

Dynamically allocated string structure
x86

Binary: world_go

Dynamically allocated string structure
x86

Binary: world_go

Length

Dynamically allocated string structure
x86

• Search for these instructions and define strings

Binary: eCh0raix – x86, world_go

Dynamically allocated string structure
x86

• Results after executing the script

Binary: world_go

Dynamically allocated string structure
x86

• After executing our script the number of defined strings grew from 9719 to 11213

Binary: eCh0raix – x86

Dynamically allocated string structure
ARM – before executing the script

Binary: eCh0raix – ARM

Length

Dynamically allocated string structure
ARM – after executing the script

Binary: eCh0raix – ARM

Dynamically allocated string structure
ARM – before executing the script

Binary: Kaiji – ARM

Dynamically allocated string structure
ARM – after executing the script

Binary: Kaiji – ARM

Dynamically allocated string structure
Challenges

• Different instruction sets

• Can be implemented in different ways within the same architecture

• Easy to break intentionally

Binary: Kaiji – ARM

Statically allocated string structure
Idea

• Look for pointer to string followed by possible length value

• To eliminate FPs limit string length and search for printable characters only

• Check only in data sections
• Not architecture specific

String pointers

String length

Binary: eCh0raix – x86

Statically allocated string structure
Example – before executing the script

One pointer was successfully identified

as it is directly referenced from the codeString pointers

String length

Binary: eCh0raix – x86

Statically allocated string structure
Example – before executing the script

String pointers

String length

Strings are not defined

Binary: eCh0raix – x86

Statically allocated string structure
Example – after executing the script

String pointersString length

Binary: eCh0raix – x86

Strings are defined

Statically allocated string structure
Challenges

• Non-printable characters

o A string might contain non-printable characters as well (e.g. new line)

o Experiment with the script, change the values and find the best for your analysis

• String length limitation

o Missing some strings
o Experiment with the script, change the values and find the best for your analysis

String recovery challenges
Falsely defined data types by Ghidra

• undefined4 or undefined8 (depends on pointer size)

• Already defined data types cannot be

redefined
(undifined4 and undifined8 are defined data

types)
• First the data type has to be removed

• Then the new data type can be defined

Binary: eCh0raix – x86

String recovery challenges
Falsely defined data types by Ghidra

• undefined4 or undefined8 (depends on pointer size)

• Already defined data types cannot be

redefined
(undifined4 and undifined8 are defined data

types)
• First the data type has to be removed

• Then the new data type can be defined

Binary: eCh0raix – x86

String recovery challenges
Falsely defined data types by Ghidra

• A large string blob (containing multiple strings) defined as one string

Binary: Kaiji – ARM

Offcut references

String recovery challenges
Falsely defined data types by Ghidra

Binary: Kaiji – ARM

• A large string blob (containing multiple strings) defined as one string

Other researcher’s work
Links

IDA Pro

• https://github.com/sibears/IDAGolangHelper

• https://github.com/strazzere/golang_loader_assist
radare2 / Cutter

• https://github.com/f0rki/r2-go-helpers
• https://github.com/JacobPimental/r2-gohelper/blob/master/golang_helper.py

• https://github.com/CarveSystems/gostringsr2
Binary Ninja

• https://github.com/f0rki/bn-goloader
Ghidra

• https://github.com/felberj/gotools

Only handles linux/x86_64 binaries.
• https://github.com/ghidraninja/ghidra_scripts/blob/master/golang_renamer.py

Files used during the presentation
Hashes

File name SHA-256

world.c 761301bb14ea3b678650fc1b6da768f009387ee726712e291d57e2d7985613d0

world.go 7cb3316a7b89eb996e8dbb0d0fb277136cd588cc54642f3b09aa84cd177cb3a2

world_c 76a5c4ef9277b97660f2c412e67ff2c3826e699913db86cd333e8f1d4fb5b8a3

world_c_strip 486a93362a6a8bc3b449fd6ba07656011c687ed31a19091c329a434bff4d75bb

world_go d0d4781de4ffd5fbe18d59328eccd373a782eecdf55a2c5199b7dc6598cfb99e

world_go_strip 9b975bd9406a8b79a414195e184be0c82bb1593979577f0344c797f9bcd4ad0b

world_go.exe 9e36291f5fc67fdb9e5e17b636d34b39f2cc39f328916a9012a8f8d545e9d0c8

world_go_strip.exe c5b66623942a0cea6df30541e92afe93172be7bb4dbdd42a1fa354e9edd79a1d

world_go_println fa00f5ad2aa79a6245a28516bc285ae8c36f075d818787aadff6f3e850e2ec5c

eCh0raix - x86 154dea7cace3d58c0ceccb5a3b8d7e0347674a0e76daffa9fa53578c036d9357

eCh0raix - ARM 3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285cc2c4d7fa3f120d

Kaiji - x86_64 f4a64ab3ffc0b4a94fd07a55565f24915b7a1aaec58454df5e47d8f8a2eec22a

Kaiji - ARM 3e68118ad46b9eb64063b259fca5f6682c5c2cb18fd9a4e7d97969226b2e6fb4

References, additional reading
Other Go malware research

• https://rednaga.io/2016/09/21/reversing_go_binaries_like_a_pro/

• https://2016.zeronights.ru/wp-content/uploads/2016/12/GO_Zaytsev.pdf
• https://carvesystems.com/news/reverse-engineering-go-binaries-using-radare-2-and-python/
• https://www.pnfsoftware.com/blog/analyzing-golang-executables/
• https://github.com/strazzere/golang_loader_assist/blob/master/Bsides-GO-Forth-And-Reverse.pdf
• https://github.com/radareorg/r2con2020/blob/master/day2/r2_Gophers-AnalysisOfGoBinariesWithRadare2.pdf

https://rednaga.io/2016/09/21/reversing_go_binaries_like_a_pro/
https://2016.zeronights.ru/wp-content/uploads/2016/12/GO_Zaytsev.pdf
https://carvesystems.com/news/reverse-engineering-go-binaries-using-radare-2-and-python/
https://www.pnfsoftware.com/blog/analyzing-golang-executables/
https://github.com/strazzere/golang_loader_assist/blob/master/Bsides-GO-Forth-And-Reverse.pdf
https://github.com/radareorg/r2con2020/blob/master/day2/r2_Gophers-AnalysisOfGoBinariesWithRadare2.pdf

VB2021 localhost
October 2021

Dorka Palotay

Senior Threat Researcher, CUJO AI

@pad0rka

Albert Zsigovits

Threat Researcher, CUJO AI

@albertzsigovits

CUJO AI Labs

https://github.com/getCUJO/ThreatIntel

@CujoaiLabs

