
BUGS IN MALWARE – UNCOVERING
VULNERABILITIES FOUND IN MALWARE
PAYLOADS

Nirmal Singh,

Uday Pratap Singh

ThreatLabZ

Agenda

• Introduction

• Study approach

• Look at case studies

2

Introduction

• Malware authors often take advantage of vulnerabilities in popular software.

• A lot of research on anti-VM and anti-sandbox techniques and techniques for bypassing AV

product.

• Malware is also prone to bugs and coding errors which can cause it to crash or which can

serve as backdoors for whitehats.

• Such bugs can often persist in a family for a long time.
3

Introduction

• The purpose of this research is threefold:

• To look at what type of vulnerabilities exist in some of the prevalent malware families.

• To discuss the use of these bugs/vulnerabilities in preventing malware infection.

• To find out whether these are real vulnerabilities/coding errors or escape mechanisms.

4

Study Approach

• Large-scale analysis on a data set of malicious samples collected from the Zscaler Cloud

Sandbox based on a few behaviour signatures

• Malware samples collected from 2019 to March 2021 in the Zscaler Cloud

• Clustering of samples using behavioral similarities

• MITRE’s Common Weakness Enumeration (CWE) system used to categorize malware

bugs.

Case Study #1
WIN32.PWS.VIDAR MULTIPLE BUGS IN THE CODE

• Steals information and cryptocurrency from infected users

• Vidar can also scrape an Impressive selection of digital wallets

• In the Zscaler Cloud Sandbox, we found 94 samples showing execution errors.

• Bug 1: Incorrect check of function return value

• This bug is about calling an API and performing an operation without validating the output of that

API call

• This bug is part of CWE-253 and it has consequences such as unexpected state, DoS, crash, exit,

or restart of the system.

Case Study #1
WIN32.PWS.VIDAR MULTIPLE BUGS IN THE CODE

• Bug 2: Common buffer used by an API to perform multiple tasks & out-of-

bounds write

• Downloads config files from the C&C using the InternetReadFile

• This bug is a classic case of CWE-787 where malware writes data past the end of the buffer,

which results in the corruption of data, a crash, or code execution.

Case Study #1
WIN32.PWS.VIDAR MULTIPLE BUGS IN THE CODE

• Bug 3: Detection of absent string in configuration without any action

• Sample crashes it if it’s not able to download data from the C&C or if it’s not able to find a

specific string (‘about’) in the downloaded data.

• Example of CWE-390, where the malware detects an error but doesn’t perform any action to

prevent the consequences of the error, which may result in sample crashing.

Case Study #1
WIN32.PWS.VIDAR MULTIPLE BUGS IN THE CODE

Case Study #2
INCORRECT CALCULATION OF BUFFER SIZE

• WIN32.DOWNLOADER.RUGMI is a downloader which has been seen downloading RATs, e.g.

Remcos, and other malware.

• Found 17 samples of this malware showing execution errors during a campaign that was active

from February to March 2021.

• Downloads a PNG file from i[.]imgur[.]com, which contains configuration data and a payload file.

• The decryption logic assumes that the size of the uncompressed data will be four times the size

of the file, so it allocates memory according to that .

Case Study #2
INCORRECT CALCULATION OF BUFFER SIZE

• This bug is mapped to CWE-131. Such bugs may lead to an out-of-bounds read or write, possibly

causing a crash, allowing arbitrary code execution, or exposing sensitive data.

Case Study #2
INCORRECT CALCULATION OF BUFFER SIZE

Case Study #3
LOADING UNVALIDATED RELOCATION TABLE

• Win32.Trojan.Buerloader, active from mid-2019 and seen in the wild downloading other

ransomware and banking malware.

• Found 19 samples of this variant showing similar behaviour and all were leading to crashes due

to similar bugs.

• For installation, this sample drops itself in the %PROGRAMDATA% folder and starts a new

instance with following command-line parameters:

• C:\ProgramData\Ostersin\gennt.exe "<initial file location>" ensgJJ

• Starts the secinit.exe legitimate process in suspended mode using the CreateProcessW API

• Writes DLL and initialization code for DLL using the VirtualAlloc and WriteProcessMemory APIs

Case Study #3
LOADING UNVALIDATED RELOCATION TABLE

• The DLL initialization code performs the following actions:

• Fixes the DLL offset using the relocation table in the PE header.

• Parse the import table of the DLL and loads the DLLs mentioned in the import table using

the LdrLoadDll Windows API.

• Builds the import table using the LdrGetProcedureAddress API.

• Calls the entry point of the DLL

Case Study #3
LOADING UNVALIDATED RELOCATION TABLE

• DLL file is compiled with IMAGE_FILE_RELOCS_STRIPPED

Case Study #4
INCORRECT CHECK OF FUNCTION RETURN VALUE

• Win32.PWS.Oski introduced in 2019, steals personal and sensitive information from a victim’s

system.

• It also steals passwords stored in Google Chrome.

• Copies the ‘Login Data’ file from the location ‘%LOCALAPPDATA%\Google\Chrome\User

Data\Default’ in ‘C:\ProgramData\<InstallFolder>\tmp’

• Malware extracts origin_url, username_value and password_value

Case Study #4
INCORRECT CHECK OF FUNCTION RETURN VALUE

Case Study #4
INCORRECT CHECK OF FUNCTION RETURN VALUE

Size of a BLOB or a UTF-8 TEXT result in bytes

Case Study #4
INCORRECT CHECK OF FUNCTION RETURN VALUE

Case Study #5
INCONSISTENT INTERPRETATION OF HTTP RESPONSE HANDLING

• A downloader sample and it shows an

execution error when it encounters an

unexpected HTTP response from the C2

• Doesn’t validate the C2 response read

through the InternetReadFile Windows

API

• Found 100+ similar samples from this

family

• Bug 1: Win32.Downloader.Penguish – no check for InternetReadFile API output

• Bug 2: Win32.Downloader.Glupteba – no check for URLDownloadToFile API output

• Both these bugs are related to the misinterpretation of HTTP response, which falls

under CWE-444

Case Study #5
INCONSISTENT INTERPRETATION OF HTTP RESPONSE HANDLING

Case Study #6
WILDCARD SEARCH FOR DLL

• Win32.Backdoor.Emotet a famous malware-as-a-service (MaaS), was first seen in 2014

• Found 318 Emotet samples showing execution errors due to different types of bugs.

• Issue in the logic it uses to get the address of the NTDLL.DLL system DLL.

Case Study #6
WILDCARD SEARCH FOR DLL
• A similar issue was found in another sample but for a different DLL –Kernel32.dll

• Change the file name to anything that starts with ‘K’, it will result in the crash.

• Such bugs are covered under CWE-1023 and may lead to altered execution logic, bypass of protection mechanism, etc

Case Study #7
USE OF FUNCTION WITH INCONSISTENT IMPLEMENTATIONS

• Malware samples are usually packed using unknown packers.

• Win32.PWS.Raccoon type of malware focused on gathering sensitive information from the

infected system.

• Extracts and steal credentials stored by Internet Explorer.

• Starting with Windows 7, Internet Explorer stores sensitive information including passwords in

the Windows Vault.

• Malware uses different APIs (VaultOpenVault, VaultCloseVault, VaultEnumerateItems,

VaultGetItem and VaultFree) from VAULTCLI.DLL

• There is a change in the VaultGetItem API starting from Windows 8

• As per MSDN documentation, the

behaviour of this API has changed,

starting from Windows 8.1.

• For applications not manifested for

8.1 or Windows 10, this API will

always return the Windows 8 OS

version value (6.2)

Case Study #7
USE OF FUNCTION WITH INCONSISTENT IMPLEMENTATIONS

Case Study #7
USE OF FUNCTION WITH INCONSISTENT IMPLEMENTATIONS

Case Study #8
IMPROPER HANDLING OF INSUFFICIENT PERMISSIONS / PRIVILEGES

• Win32.Ransom.Sapphire a

type of malware that encrypts

a victim’s files and demands a

ransom.

• Encrypts all files in the ‘C:\’

directory and skips files with

the .VIVELAG extension.

• Found a variant of this

ransomware that doesn’t

check the permission of

directories

Conclusion

• Looked at multiple examples of malware with different types of vulnerabilities.

• Tried to classify all the bugs using MITRE’s CWE list.

• This study includes a broad range of malware from stealers and downloaders to ransomware.

• This research shows that malware code often contains multiple bugs and indicates that no
proper quality assurance checks.

• Security vendors can leverage these bugs to write different types of signatures to identify and
block such malware attacks

28

29 Securing your digital transformation

Thank you!

