

BUGS IN MALWARE – UNCOVERING VULNERABILITIES FOUND IN MALWARE PAYLOADS

Nirmal Singh, Uday Pratap Singh ThreatLabZ

©2020 Zscaler, Inc. All rights reserved. ZSCALER CONFIDENTIAL INFORMATION Zscaler[™], Zscaler Internet Access[™], Zscaler Private Access[™], ZIA[™] and ZPA[™] are either (i) registered trademarks or service marks or (ii) trademarks or service marks of Zscaler, Inc. In the United States and/or other countries. Any other trademarks are the property of their respective owners.

Agenda

- Introduction
- Study approach
- Look at case studies

- Introduction
- Malware authors often take advantage of vulnerabilities in popular software.
- A lot of research on anti-VM and anti-sandbox techniques and techniques for bypassing AV product.
- Malware is also prone to bugs and coding errors which can cause it to crash or which can serve as backdoors for whitehats.

• Such bugs can often persist in a family for a long time.

Introduction

- The purpose of this research is threefold:
- To look at what type of vulnerabilities exist in some of the prevalent malware families.
- To discuss the use of these bugs/vulnerabilities in preventing malware infection.
- To find out whether these are real vulnerabilities/coding errors or escape mechanisms.

- Large-scale analysis on a data set of malicious samples collected from the Zscaler Cloud Sandbox based on a few behaviour signatures
- Malware samples collected from 2019 to March 2021 in the Zscaler Cloud
- Clustering of samples using behavioral similarities
- MITRE's Common Weakness Enumeration (CWE) system used to categorize malware bugs.

- Steals information and cryptocurrency from infected users
- Vidar can also scrape an Impressive selection of digital wallets
- In the Zscaler Cloud Sandbox, we found 94 samples showing execution errors.

- Bug 1: Incorrect check of function return value

```
offset aPassword 1 ; "Password"
        eax, [ebp+0D78h+Name]
lea
push
        eax
push
        [ebp+0D78h+phkResult] ; HKEY CURRENT USER\Software\
                         ; Martin Prikryl\WinSCP 2\
                         ; Sessions\Default%20Settings
        [ebp+0D78h+var D7C], ebx
MOV
        esi : bute 473020 ; RegGetValueA
call
        ecx, [ebp+0D78h+var D98] ; Not return code check
MOV
lea
        eax, [ebp+0D78h+var D08]
                         ; void *
push
        eax
        eax, [ebp+0D78h+var 908]
lea
                         ; int
push
        eax
        eax, [ebp+0D78h+var 508]
lea
push
                         ; int
        eax
        eax, [ebp+0D78h+var D5C]
lea
push
                         ; int
        eax.
call
        DecruptPassWord
```

• This bug is part of CWE-253 and it has consequences such as unexpected state, DoS, crash, exit, or restart of the system.

- Bug 2: Common buffer used by an API to perform multiple tasks & out-ofbounds write
- Downloads config files from the C&C using the InternetReadFile

<pre>IReadFile_Loop:</pre>		; CODE XREF: DownLoadConfig+FF↓j
	mov	<pre>eax, [ebp+804h+dwNumberOfBytesRead]</pre>
	cmp	eax, ebx
	jz	short loc_404FBE ; Exit Loop if dwNumberOfBytesRead is zero
	mov	[ebp+eax+804h+Buffer], bl
	lea	<pre>eax, [ebp+804h+dwNumberOfBytesRead]</pre>
	push	eax ; 1pdwNumberOfBytesRead
_	push	
(lea	eax, [ebp+804h+Buffer]
	push	eax ; lpBuffer
	push	[ebp+804h+hFile] ; hFile
loc_404FB8:		; CODE XREF: DownLoadConfig+E21j
	call	esi ; InternetReadFile
	test	eax, eax
	jnz	short <mark>IReadFile_Loop</mark>

• This bug is a classic case of CWE-787 where malware writes data past the end of the buffer, which results in the corruption of data, a crash, or code execution.

- Bug 3: Detection of absent string in configuration without any action
- Sample crashes it if it's not able to download data from the C&C or if it's not able to find a specific string ('about') in the downloaded data.

```
v2 = DownLoadConfig((int)&v6, *(LPCSTR *)&v7, v8, v9, v10, v11, v12, v13, v14, v15, v16, v17, v18, v19);
LOBYTE(v20) = 3;
sub_401704(&v14, (void *)v2);
sub_4013B4(&v6, 1, 0);
LOBYTE(v20) = 0;
sub_4013B4(&v7, 1, 0);
v3 = FindStrLocation((int)&v14, (const char field, 0);
if ( v3 != -1 )
{
    sub_40133E(0, v3 + 8);
    v4 = v14;
    if ( v19 < 0x10 )
        v4 = (char *)&v14;
    strToker = strtok(v4, v5);
    }
crashHere(&dword_486078, @trToker); ]
    sub_4013B4(&v14, 1, 0);
```

• Example of CWE-390, where the malware detects an error but doesn't perform any action to prevent the consequences of the error, which may result in sample crashing.

- WIN32.DOWNLOADER.RUGMI is a downloader which has been seen downloading RATs, e.g. Remcos, and other malware.
- Found 17 samples of this malware showing execution errors during a campaign that was active from February to March 2021.
- Downloads a PNG file from i[.]imgur[.]com, which contains configuration data and a payload file.

Case Study #2 INCORRECT CALCULATION OF BUFFER SIZE

• The decryption logic assumes that the size of the uncompressed data will be four times the size of the file, so it allocates memory according to that .

push	esi	
call	eax ; GetFileSize	
mov	ebx, eax	
call	GETDLL	
push	esi	
mov	edx, 0B09315F4h	
mov	ecx, eax	
call	GETAPI	
call	eax ; CloseHandle	
test	ebx, ebx	
jz	short loc_49E76C1	
lea	esi, ds:0[ebx*4] ; FileSize*4	
test	esi, esi	
jz	short loc_49E76C1	
call	GETDLL	
mov	edx, 9CE0D4Ah	
mov	ecx, eax	
call	GETAPI	
push	4	
push	<u>3000h</u>	
push	esi	
push	0	
call	eax ; VirtualAlloc	
mov	esi, eax	

Case Study #2 INCORRECT CALCULATION OF BUFFER SIZE

• This bug is mapped to CWE-131. Such bugs may lead to an out-of-bounds read or write, possibly causing a crash, allowing arbitrary code execution, or exposing sensitive data.

- Win32.Trojan.Buerloader, active from mid-2019 and seen in the wild downloading other ransomware and banking malware.
- Found 19 samples of this variant showing similar behaviour and all were leading to crashes due to similar bugs.
- For installation, this sample drops itself in the %PROGRAMDATA% folder and starts a new instance with following command-line parameters:
 - C:\ProgramData\Ostersin\gennt.exe "<initial file location>" ensgJJ
- Starts the secinit.exe legitimate process in suspended mode using the CreateProcessW API
- Writes DLL and initialization code for DLL using the VirtualAlloc and WriteProcessMemory APIs

- The DLL initialization code performs the following actions:
 - Fixes the DLL offset using the relocation table in the PE header.
 - Parse the import table of the DLL and loads the DLLs mentioned in the import table using the LdrLoadDII Windows API.
 - Builds the import table using the LdrGetProcedureAddress API.
 - Calls the entry point of the DLL

Case Study #3 LOADING UNVALIDATED RELOCATION TABLE

• DLL file is compiled with IMAGE_FILE_RELOCS_STRIPPED

72 CØ JB SHORT gennt.40003B32	
8B81 A0000000 MOV EAX,DWORD PTR DS:[ECX+A0] Reloc table RVA 🤇	
03C7 ADD EAX,EDI Reloc Table absolute addr	ess 🧲
897D BC MOV DWORD PTR SS:[EBP-44],EDI Base Address of PE to Inj	ect
8945 CO MOU DWORD PTR SS:[EBP-40],EAX	
8881 80000000 MOV EAX, DWORD PTR DS:[ECX+80]	
03C7 ADD EAX,EDI	
AOUT OF MOUL MODE DID CONTEND OFT FAY	

188]=00000000 000

Hex dump		Data	Comment
	00000000	DD 00000000	Relocation Table address = 0
	999999999	DD 00000000	Relocation Table size = 0
	R AF 1 A A A A	DD AAAAF1BA	Debug Data address = E1B0

- Win32.PWS.Oski introduced in 2019, steals personal and sensitive information from a victim's system.
- It also steals passwords stored in Google Chrome.
- Copies the 'Login Data' file from the location '%LOCALAPPDATA%\Google\Chrome\User Data\Default' in 'C:\ProgramData\<InstallFolder>\tmp'
- Malware extracts origin_url, username_value and password_value

••••	51 FF15 50273601 83C4 08 85C0 0F85 AA040000 6A 00 8D55 AC	PUSH ECX CALL DWORD PTR DS:[1362750] ADD ESP.8 TEST EAX,EAX JNZ _03CD000.0134E613 PUSH 0 LEA EDX,[LOCAL.21]	salite3.salite3_open
			>

750]=6096CE31 (sqlite3.sqlite3_open)

ASCII dump	
SELECT orlein url, username value, password value FROM login .5% skillereU'TP.+SELECT HOST KEY. is httponly, path, is s ecure, (expires_utc/1000000)-11644480800, name, encrypted_value from cookies.%%%%%%%eeBeU:TP.tSELECT name_on_card, exp iration_month, expiration_year, card_number_encrypted FROM credi t_cards.%%%%%%DeU<=p.+SELECT fieldname, value FROM moz _formhistory.%%%%%%eeEeU=FP.*SELECT name, value FROM	

Case Study #4 INCORRECT CHECK OF FUNCTION RETURN VALUE

Tabl	e: 🔲 logins 🛛 🗸	(<u>72</u>)	8	» Filter in	Mo	ode: Bir	nary	~		>												
	username_value	ord_e	passwo	ord_value																		
	Filter	Filter	Filter	_		0000	01	00	00	00	d0	8c	9d	df	01	15	d1	11	8c	7a	00	c0
1	admin		BLOB			0010	4I bf	c2 b7	97 c4	ер 87	01 e3	00 db	00 9a	00 a7	27	1d 00	9a 00	4a 00	au 02	96 00	1a 00	45 00
2	admin		BLOB			0030	00	00	10	66	00	00	00	01	00	00	20	00	00	00	7b	f0
3	admin		BLOB		Ту	pe of da	ta cu	rrently	y in o	ell: Bi	inary											
4	admin		BLOB		23	0 byte(s)															

Case Study #4 INCORRECT CHECK OF FUNCTION RETURN VALUE

push 2 ; column ID = 2eax, [ebp+psqlite3 stmt] mov push eax call sqlite3_column_bytes (Size of a BLOB or a UTF-8 TEXT result in bytes add esp, 8 : Size push eax push 2 ecx, [ebp+psqlite3 stmt] mov push ecx call sqlite3 column blob add esp, 8 push eax ; Src lea edx, [ebp+decryptBuffer] push edx ; int call DecryptData add esp, 14h

Case Study #4 INCORRECT CHECK OF FUNCTION RETURN VALUE

🕞 N	lew Database	🕞 Open	Databas	• 🗸	💼 Write	Changes	Revert Chang	jes 🛛 🧃	Ope
Database Structure		Brows	e Data	Edit F	ragmas	E	Edit Database	Cell	
Table	e: 🔟 logins	\sim		76	🔷 »[Filter in	Mode: Text	~	
	username_	value	ord_el	pass	word	_value			
	Filter		Filter	Filter	-		NULL		
1	admin		(NULL					
2	admin			BLOE	3				
3	admin			BLOE	3		Type of data cu	rrently in ce	II: NU
4	admin			PI OI	2		0 byte(s)		

Case Study #5 INCONSISTENT INTERPRETATION OF HTTP RESPONSE HANDLING

- Bug 1: Win32.Downloader.Penguish no check for InternetReadFile API output
- A downloader sample and it shows an execution error when it encounters an unexpected HTTP response from the C2
- Doesn't validate the C2 response read through the InternetReadFile Windows API
- Found 100+ similar samples from this family

if (!ptr_C2Data) BuildMachineID(sz): U6 = xmmword_34D800; v7 = 35: U3 = Decrypt_C2_path(&U6); wsprintfA(byte_388800, (LPCSTR)v3, sz); *(_QWORD *)&06 = 8532196438026516344i64; $DWORD2(\cup 6) = 2053405564$: $WORD6(\cup 6) = 31356;$ BYTE14(06) = 0;ptr_structInternetData.ptr_unKwn2 = sub_361AB5(&v6); ptr_structInternetData.c2portNumber = 8055; ptr structInternetData.ptr ToC2Path = (int)bute 388800; ptr_structInternetData.flag1 = 1; C2_Communication(&ptr_structInternetData);> ∪2 = sz: ptr_C2Data = (char *)ptr_structInternetData.ptr_C2DataFull; *(BYTE *)(ptr structInternetData.dwSizeOfc2Data + ptr structInternetData.ptr C2DataFull) = 0; BuildMachineID(v2): memmove_0(&CopyOF_structInternetData, &ptr_structInternetData, 0x20u); CopyOF_structInternetData.ptr_PingStr = (int)v1; CopyOF structInternetData.pingStrLen = strlen((const char *)v1) + 1; sub_3689C7(); C2_Communication(&CopyOF_structInternetData); sub_3689C7(); return CopyOF_structInternetData.ptr_C2DataFull;

ThreatLab

Case Study #5 **ThreatLab INCONSISTENT INTERPRETATION OF HTTP RESPONSE HANDLING**

Bug 2: Win32.Downloader.Glupteba – no check for URLDownloadToFile API output

Both these bugs are related to the misinterpretation of HTTP response, which falls ٠ under CWE-444

Case Study #6 WILDCARD SEARCH FOR DLL

- Win32.Backdoor.Emotet a famous malware-as-a-service (MaaS), was first seen in 2014
- Found 318 Emotet samples showing execution errors due to different types of bugs.
- Issue in the logic it uses to get the address of the NTDLL.DLL system DLL.

```
int __cdecl GetModHandle(unsigned __int16 ×dllName)
{
    int PEB_offset; // ST10_4@1
    int InLoadOrderModuleListBase; // [sp+0h] [bp-10h]@1
    int InLoadOrderModuleListCurrent; // [sp+Ch] [bp-4h]@1

    PEB_offset = *(_DWORD *)(__readfsdword(0x30u) + 0xC);
    InLoadOrderModuleListBase = *(_DWORD *)(PEB_offset + 0xC);
    InLoadOrderModuleListCurrent = *(_DWORD *)(PEB_offset + 0xC);
    do
    {
        if ( !CompareBaseDLLName(*(unsigned __int16 **)(InLoadOrderModuleListCurrent + 0x30), dllName) )
            return *(_DWORD *)(InLoadOrderModuleListCurrent + 0x18);// Return DLL Base Address
        InLoadOrderModuleListCurrent = *(_DWORD *)InLoadOrderModuleListCurrent;
        }
        while ( InLoadOrderModuleListCurrent != InLoadOrderModuleListBase );
        return 0;
    }
}
```

Case Study #6 WILDCARD SEARCH FOR DLL

- A similar issue was found in another sample but for a different DLL –Kernel32.dll
- Change the file name to anything that starts with 'K', it will result in the crash.
- Such bugs are covered under CWE-1023 and may lead to altered execution logic, bypass of protection mechanism, etc

```
PEB offset = *( DWORD *) ( readfsdword(0x30u) + 0xC);
InLoadOrderModuleListBase = \star ( DWORD \star) (PEB offset + 0xc);
InLoadOrderModuleListCurrent = *( DWORD *)(PEB offset + 0xC);
while (1)
 v4 = hashKey;
  DLL Base Name = wcslwr(*(wchar t **)(InLoadOrderModuleListCurrent + 0x30));// DLL Base Name
  char dllName = *( BYTE *)DLL Base Name;
  i = v4
  while (char dllName)
    i = char dllName + 0x32 * i; //Calculate hash
    char dllName = *(( BYTE *)DLL Base Name + 1);
    DLL Base Name = (wchar t *) ((char *) DLL Base Name + 1) //Next char
  if ( 1 == dllNameHash )
   break:
  InLoadOrderModuleListCurrent = *( DWORD *)InLoadOrderModuleListCurrent;
  if ( InLoadOrderModuleListCurrent == InLoadOrderModuleListBase )
    return 0;
return *( DWORD *) (InLoadOrderModuleListCurrent + 0x18); //Return Image Base
```


- Malware samples are usually packed using unknown packers.
- Win32.PWS.Raccoon type of malware focused on gathering sensitive information from the infected system.
- Extracts and steal credentials stored by Internet Explorer.
- Starting with Windows 7, Internet Explorer stores sensitive information including passwords in the Windows Vault.
- Malware uses different APIs (VaultOpenVault, VaultCloseVault, VaultEnumerateItems, VaultGetItem and VaultFree) from VAULTCLI.DLL
- There is a change in the VaultGetItem API starting from Windows 8

mov

- As per MSDN documentation, the behaviour of this API has changed, starting from Windows 8.1.
- For applications not manifested for 8.1 or Windows 10, this API will always return the Windows 8 OS version value (6.2)

mov	<pre>[ebp+VersionInformation.dwOSVersionInfoSize], esi</pre>
lea	<pre>eax, [ebp+VersionInformation]</pre>
push	eax ; lpVersionInformation
call	ds:GetVersionExW
cmp	<pre>[ebp+VersionInformation.dwMajorVersion], 6</pre>
jnz	short loc_427811
cmp	<pre>[ebp+VersionInformation.dwMinorVersion], 2</pre>
mov	[ebp+bWin80rGreater], 1
jnb	short loc_427814

```
; CODE XREF: GotoCrash+551j
```

[ebp+bWin80rGreater], bl

Case Study #7 USE OF FUNCTION WITH INCONSISTENT IMPLEMENTATIONS

<compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">
<application>

ThreatLab

Case Study #8 IMPROPER HANDLING OF INSUFFICIENT PERMISSIONS / PRIVILEGES

- Win32.Ransom.Sapphire a type of malware that encrypts a victim's files and demands a ransom.
- Encrypts all files in the 'C:\' directory and skips files with the .VIVELAG extension.
- Found a variant of this ransomware that doesn't check the permission of directories

- Looked at multiple examples of malware with different types of vulnerabilities.
- Tried to classify all the bugs using MITRE's CWE list.
- This study includes a broad range of malware from stealers and downloaders to ransomware.
- This research shows that malware code often contains multiple bugs and indicates that no proper quality assurance checks.
- Security vendors can leverage these bugs to write different types of signatures to identify and block such malware attacks

Thank you!

