

Operation LagTime IT: Colorful Panda Footprint

Virus Bulletin 2020 localhost Sept 30 - Oct 2, 2020 Fumio Ozawa, Shogo Hayashi, Rintaro Koike

About Us

Fumio Ozawa

- > SOC & malware analyst at NTT Security (Japan) KK
- Speaker at Japan Security Analyst Conference 2018

Shogo Hayashi

- > SOC & malware analyst at NTT Security (Japan) KK
- Responding to EDR detections and creating IoCs
- Co-founder at SOCYETI

Rintaro Koike

- SOC & malware analyst at NTT Security (Japan) KK
- Founder & researcher at nao_sec

Introduction

Operation LagTime IT by TA428

TA428

- Chinese APT attack group
- Mainly targeting East Asian countries
- Recent operation : "LagTime IT"

Operation LagTime IT

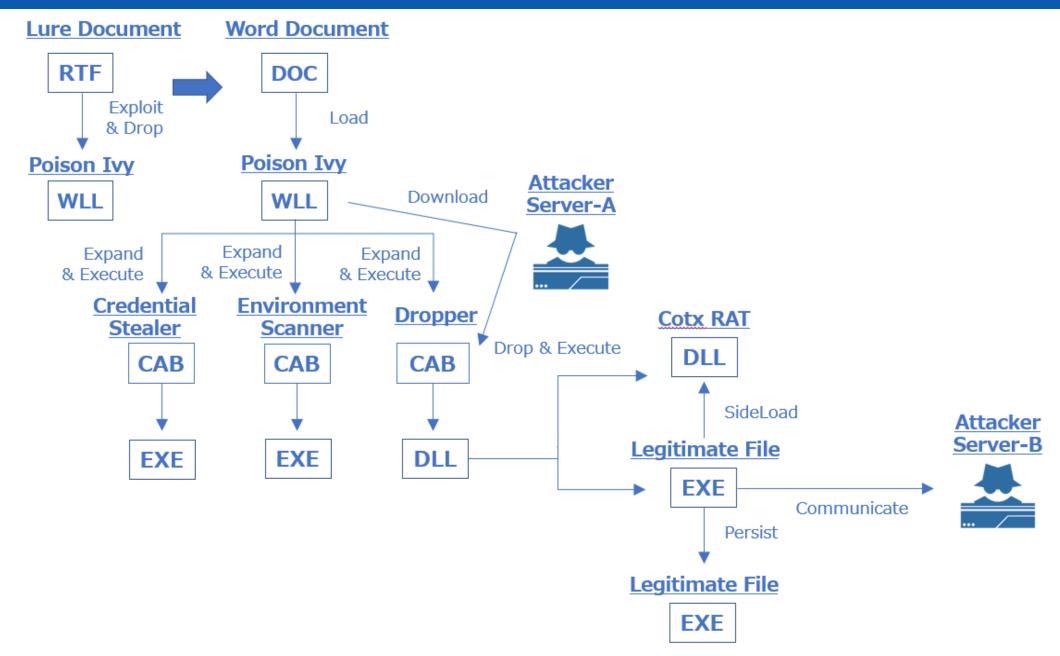
- Attack campaign by TA428 since around March 2019
- Targeting East Asian governmental organizations
- Using Royal Road RTF Weaponizer, Poison Ivy and Cotx RAT

Motivation & Goal

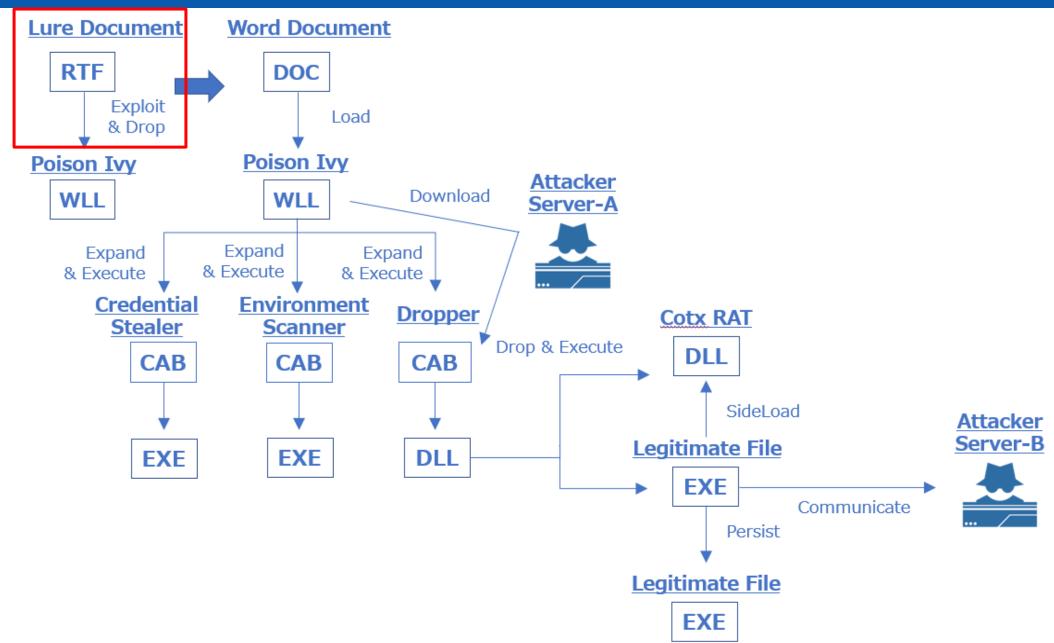
Operation LagTime IT by TA428 is an attack campaign

- Targeting governmental organization of East Asian countries
- Still in place and actively working as of 2020

The existing research deals with only the initial stages

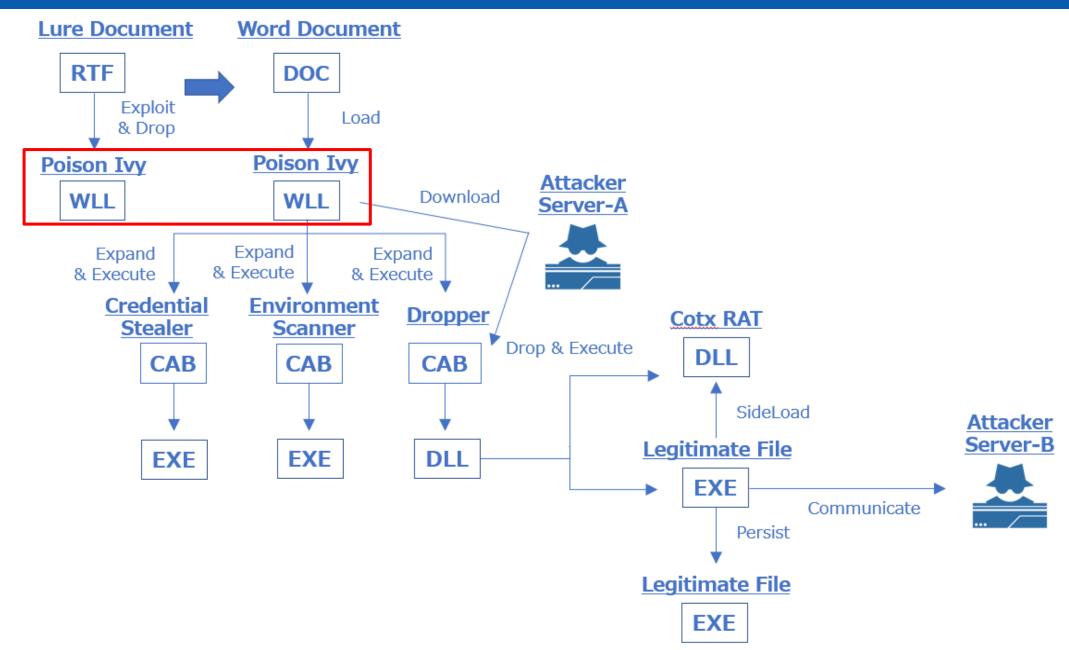

- Royal Road RTF Weaponizer, Poison Ivy and Cotx RAT
- Followed by complex attack with more malwares

We succeeded in observing the subsequent attacks


- Lateral movement
- Unknown malwares

Case 1

Lure Document


The lure document file is an RTF file

- Generated by Royal Road RTF Weaponizer
 - > Exploits CVE-2018-0798
 - Executes 2byte-XOR-encoded shellcode
 - Decodes "8.t" object and writs to ".wll" file

```
0x00000006e
                 inc
                         edx
0x00000070
                         rdi
                 pop
0x00000071
                         edi, 0x1a
0x00000074
                 xor
                         ecx, ecx
0x00000076
                         cx, 0x8ba
                 mov
0x0000007a
                         word [rdi], 0
                 cmp
0x00000007e
                 je
                         0x85
0x00000080
                         word [rdi], 0xc390
                 xor
0x00000085
                 loop
                         0x7a
0x00000089
                 jns
                         0xad
0x0000008b
                 xchg
                         eax, edx
0x0000008c
                 ret
```

```
0x00000453
                         eax, 0x48b53a6c
                 mov
0x00000458
                         edx, edx
                 xor
0x0000045a
                test
                         ebx, ebx
0x0000045c
                ile
                         0x48e
0x0000045e
                mov
                         esi, ebx
0x00000460
                push
0x00000462
                         rbx
                pop
0x00000463
                         ecx, eax
                mov
0x00000465
                         ecx, 0x1a
0x00000468
                         ecx, eax
                xor
                shr
0x0000046a
                         ecx, 3
0x0000046d
                         ecx, eax
                xor
0x0000046f
                add
                         eax, eax
0x00000471
                         ecx.
                and
0x00000474
                         eax, ecx
0x00000476
                         0x463
0x0000047a
                         ecx, dword [rbp - 0xc]
0x0000047d
                         byte [rdx + rcx], al
                xor
0x00000480
                         edx, esi
                cmp
0x00000483
                jl 
                         0x460
0x00000485
                         ebx, dword [rbp - 4]
                mov
0x00000488
                lea
                         esi, [rdi + 0x2a5]
0x0000048e
                xor
                         eax, eax
```


The RAT has long been used by Chinese APT groups

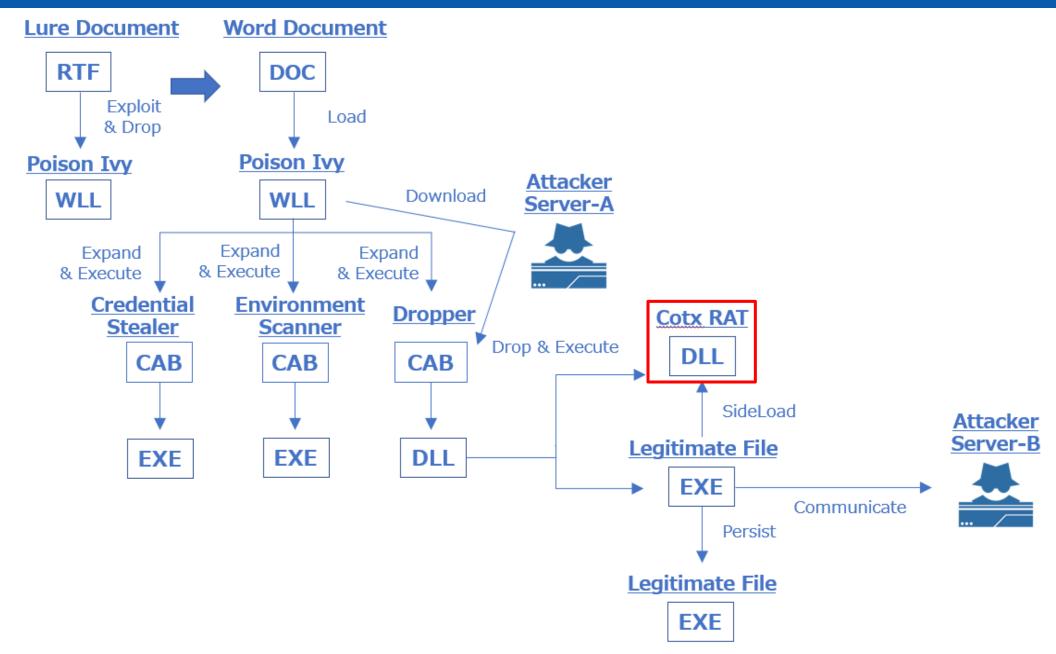
Startup Sequence

- The Poison Ivy "useless.wll" placed in the Microsoft Word startup directory is automatically loaded and executed when Microsoft Word is started.
 - %APPDATA%¥Microsoft¥Word¥STARTUP¥useless.wll
- If command line string contains "WORD.EXE", the useless.wll runs the following command that calls function implemented on itself.
 - rundli32.exe %APPDATA%¥Microsoft¥Word¥STARTUP¥useless.wll,DllEntry10
- Function DllEntry10 decodes certain data with XOR and RC4 to restore main backdoor program and executes it.

Configuration

Decoded configuration data

Item	Value			
C&C Server	95[.]179.131.29:443			
Cac server	95[.]179.131.29:8080			
Campaign ID	hold			
Group ID	hold			
Mutex	99x7nmpWW			
C&C Traffic Encryption Key (Camellia-256 in ECB mode)	3&U<9f*IZ>!MIQ			



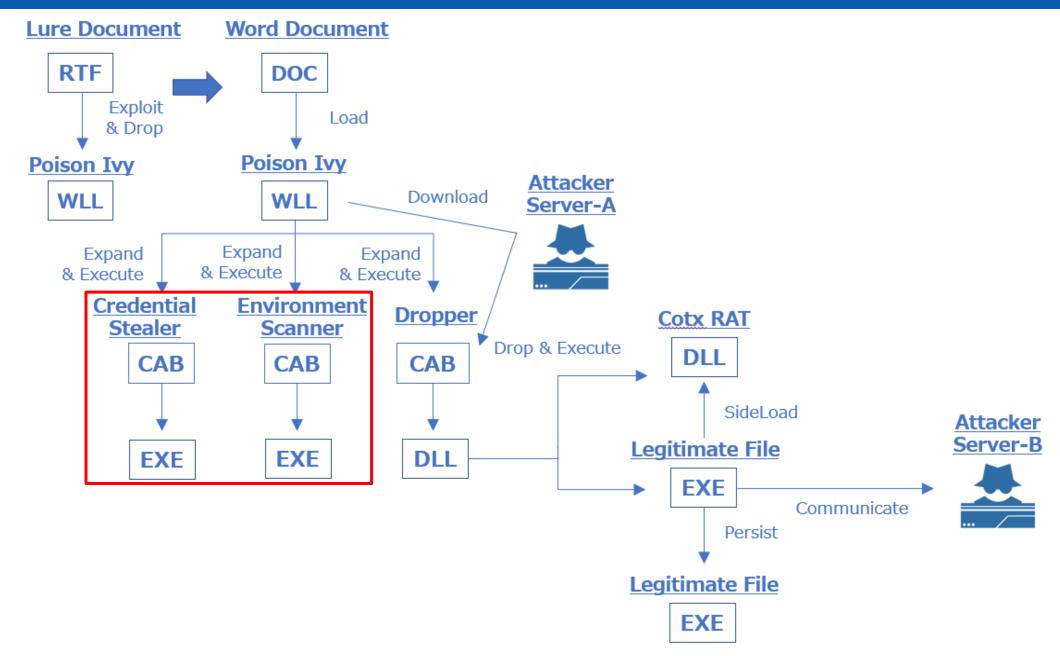
C&C Communication

- Same characteristics with the traffic generated by "SPIVY", Poison Ivy variant
 - https://unit42.paloaltonetworks.com/unit42-new-poison-ivy-rat-variant-targets-hong-kong-pro-democracy-activists/

Padding siz	ze	Pa	ddir	ng d	ata	(ra	ndo	m)	Pad	ldin	g er	nd (siz	e*2))	Enc	coded data
00000000	0b	f0	45	be	43	6a	89	34	22	9e	4e	55	16	27	a7	1c	E.Cj.4 ".NU.'
00000010	66	6a	e4	41	1d	11	cf	7a	7a	7a	ba	db	86	bf	a1	ad	fj.Az zz
00000020	61	с3	bb	1a	3e	4d	15	68	03	27	ba	d1	68	9c	1d	11	a>M.h .'h
00000030	57	73	03	7c	22	7a	17	e4	ee	21	a4	е3	7f	е3	74	66	Ws. "z!tf
00000040	87	f2	a9	b6	e1	с8	a8	29	a2	a4	6e	СС	ad	6с	43	8c)nlC.
00000050	19	bc	5e	34	96	7c	61	93	ba	f8	40	8f	99	c2	62	с9	^4. a@b.
00000060	bf	5b	ef	ea	7b	с9	8f	46	ec	6с	73	44	56	cd	1 c	45	.[{F .lsDVE
00000070	87	25	38	14	0a	b0	ab	d2	39	f7	е3	4c	9a	1d	89	3a	.%8 9L:
00000080	a5	78	42	a1	75	6c	cf	99	26	3с	14	с3	7e	e8	16	87	.xB.ul &<~
00000090	11	e2	12	cb	e8	b2	fc	04	95	65	46	b4	90	9b	07	f2	eF
000000A0	2b	a8	2a	78	cb	07	3e	10	ad	9d	58	cd	42	74	d6	9f	+.*x>X.Bt
000000B0	8b	30	e5	fc	7f	a8	a0	f4	d9	89	04	a3	с9	03	0d	13	.0
000000C0	b8	1d	74	2e	82	d2	7d	86	f7	66	c2	e7	54	79	81	b4	t}fTy
000000D0	45	d8	80	b3	07	84	28	df	99	1c	е3	19	2c	aa	f7	04	E(,
000000E0	d3	f5	3d	ca	e2	6c	e2	ee	0b	f5	aa	1f	33	6b	5d	cb	=13k].
000000F0	f9	79	e0	50	0d	b9	b8	63	3c	0b	с8	07	28	ec	f7	a4	.y.Pc <(
00000100	ce	5f	2a	d2	с6	7b	01	aa	1c	bd	30	a7	22				*{0."

The original RAT used by TA428

Behavior


- Basically same characteristics as reported in the Proofpoint's blog
 - https://www.proofpoint.com/us/threat-insight/post/chinese-apt-operation-lagtime-it-targets-government-information-technology

Configuration

Decoded configuration data

Item	Value
C&C Server	mtanews.vzglagtime[.]net:443
"mark" field in the C&C beacon	1011_15
"passwd" field in the C&C beacon	P@SSaw1

Credential Stealer

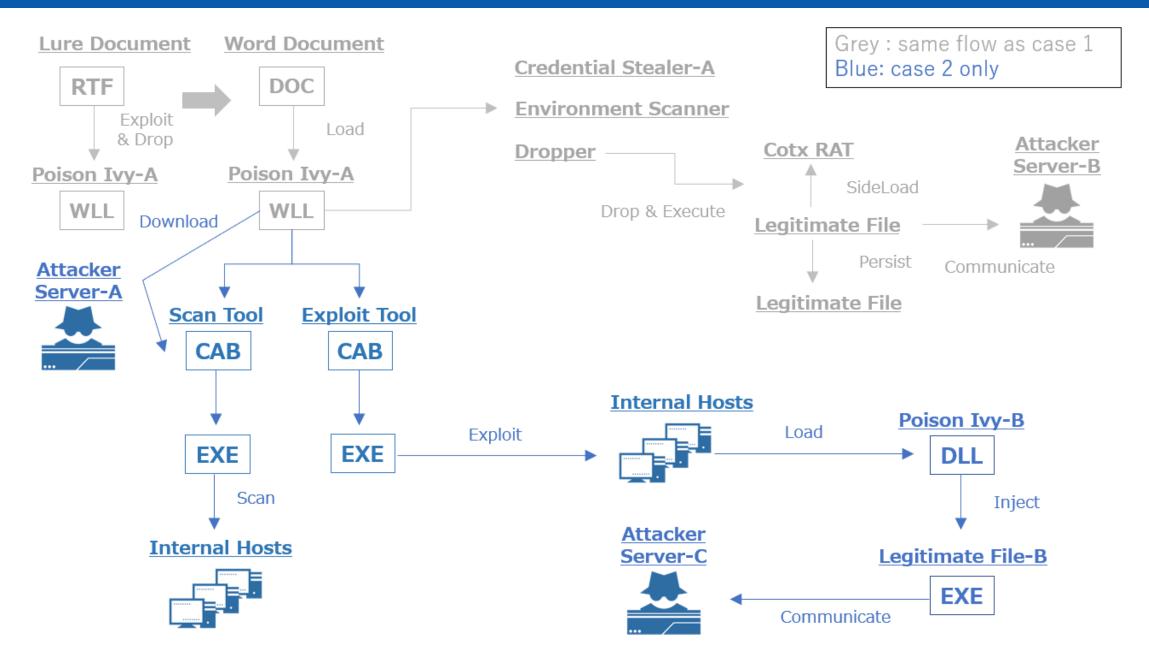
Outlook Password Dump v3.0

- Outlook Password Recovery Tool (The latest version is a commercial tool)
 - https://securityxploded.com/outlook-password-dump.php

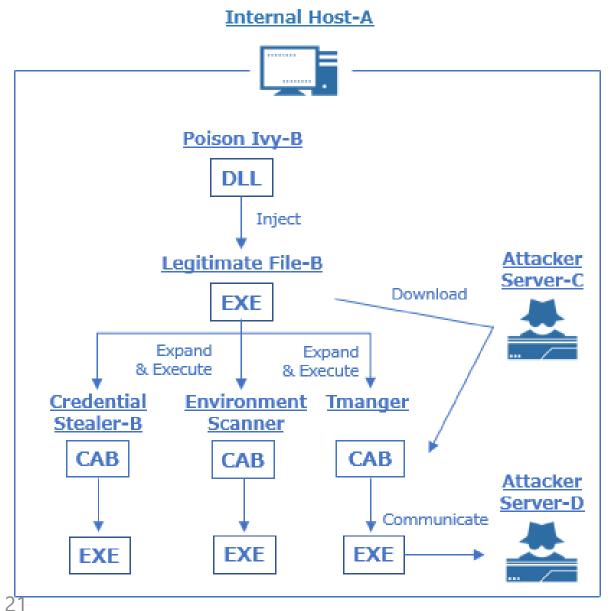
\$ o.exe								
		tokokokokokokokokok						
Outlook Password Dump	v3.0 by SecurityXploded							
http://securityxploded.com/outlook-password-dump.php								

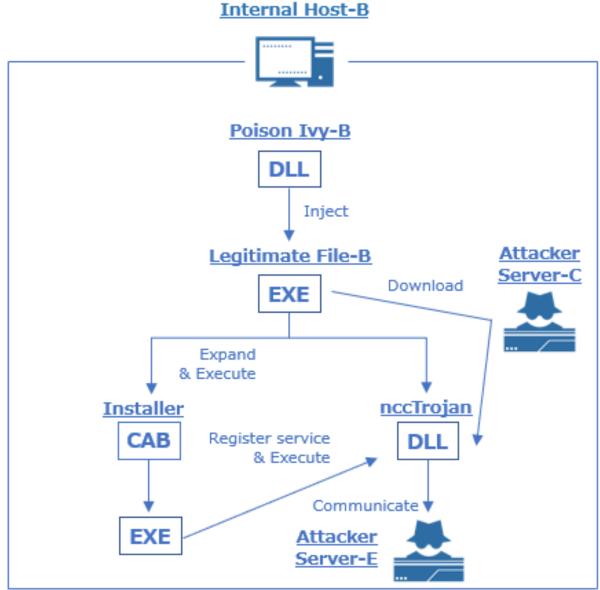
Email Address	Username	Password	Account Type	Email Server				
=======================================								

Environment Scanner

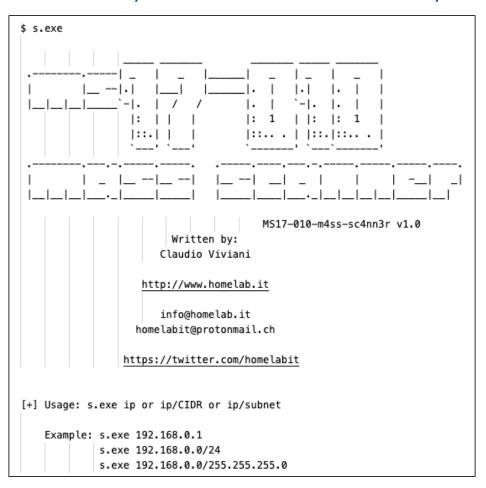

nbtscan 1.0.35

- NETBIOS nameserver scanner (public tool)
 - http://www.unixwiz.net/tools/nbtscan.html


```
$ n.exe
nbtscan 1.0.35 - 2008-04-08 - http://www.unixwiz.net/tools/
usage: n.exe [options] target [targets...]
  Targets are lists of IP addresses, DNS names, or address
  ranges. Ranges can be in /nbits notation ("192.168.12.0/24")
  or with a range in the last octet ("192.168.12.64-97")
             show Version information
             show Full NBT resource record responses (recommended)
             generate HTTP headers
             turn on more Verbose debugging
             No looking up inverse names of IP addresses responding
   -n
             bind to UDP Port <n> (default=0)
   -p <n>
             include MAC address in response (implied by '-f')
            Timeout the no-responses in <n> seconds (default=2 secs)
             Wait <n> msecs after each write (default=10 ms)
   -w <n>
             Try each address <n> tries (default=1)
   -t <n>
             Use Winsock 1 only
   -1
   –P
             generate results in perl hashref format
```


Case 2



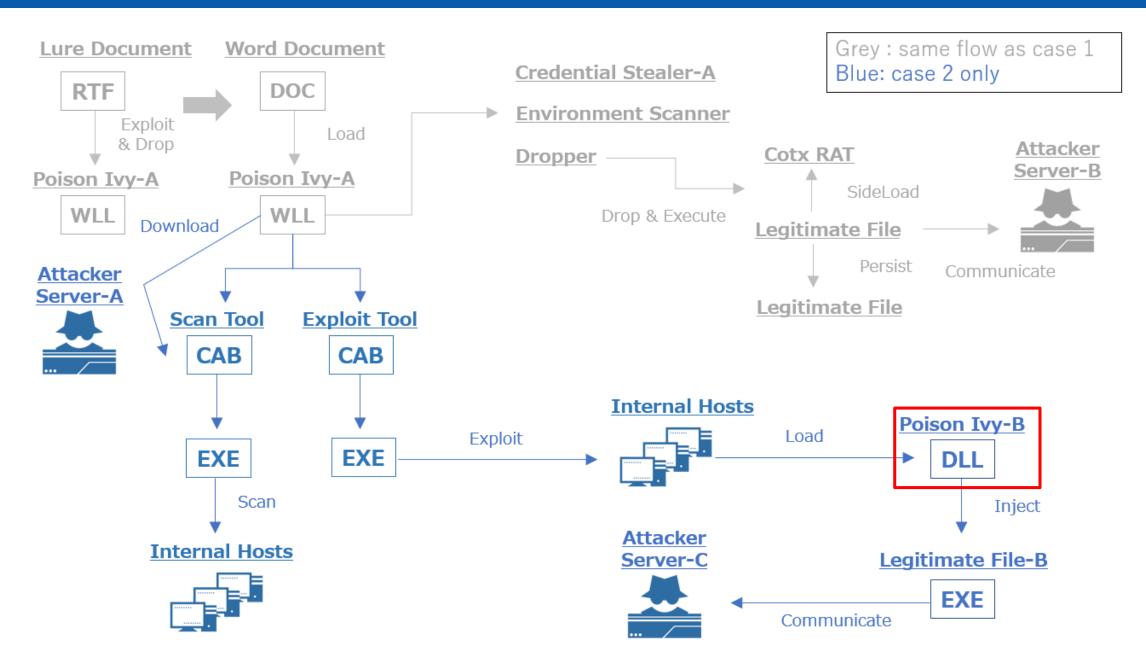


Scan Tool for MS17-010

ms17-010-m4ss-sc4nn3r v1.0

https://github.com/claudioviviani/ms17-010-m4ss-sc4nn3r/blob/master/ms17-010-m4ss-

sc4nn3r.py



Exploit Tool for MS17-010

- eternalblue.py
 - https://github.com/pythonone/MS17-010/blob/master/exploits/eternalblue/eternalblue.py

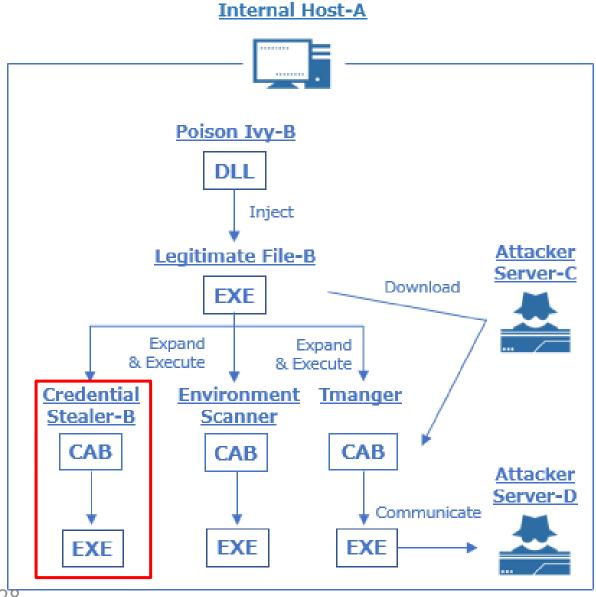
```
$ w.exe
[1]----check backdoor and system version-----
get_smb_signature 59437391
**** OS is Win 7 x86
**** backdoor is already installed!
[2]-----Inject dll -----
get_smb_signature 59437391
key 23f5a57b
dll_hex 200704
len_part: 204144
0 ---> 0x52
1 ---> 0x52
2 ---> 0x52
-- Snip --
49 ---> 0x52
50 ---> 0x52
**** dll is now injected!
```

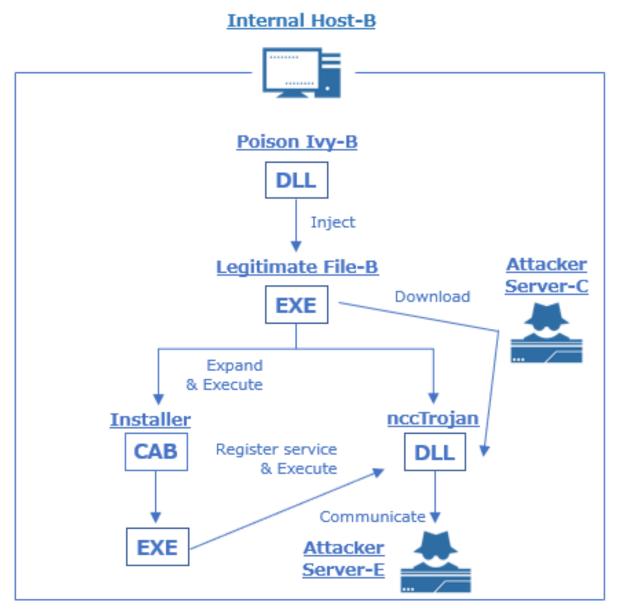

Poison Ivy-B

Startup Sequence

- Either one of the following DLL file (the Poison Ivy-B) is injected into Isass.exe on remote host by the MS17-010 exploiting tool and executed.
 - > x86.dll: for 32bit environment
 - > x64.dll: for 64bit environment
- The DLL file drops the following three files and executes PotPlayerMini.exe.
 - PotPlayerMini.exe: signed legitimate program
 - ➤ PotPlayer.dll: malware
 - > PAME13.tmp: encoded configuration data
- The PotPlayerMini.exe loads PotPlayer.dll, and the PotPlayer.dll decodes PAME13.tmp to get configuration data and starts working as a RAT.

Configuration

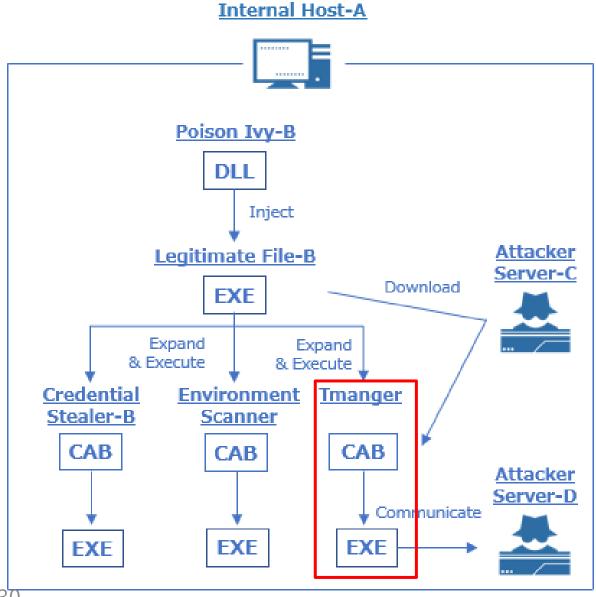

Decoded configuration data

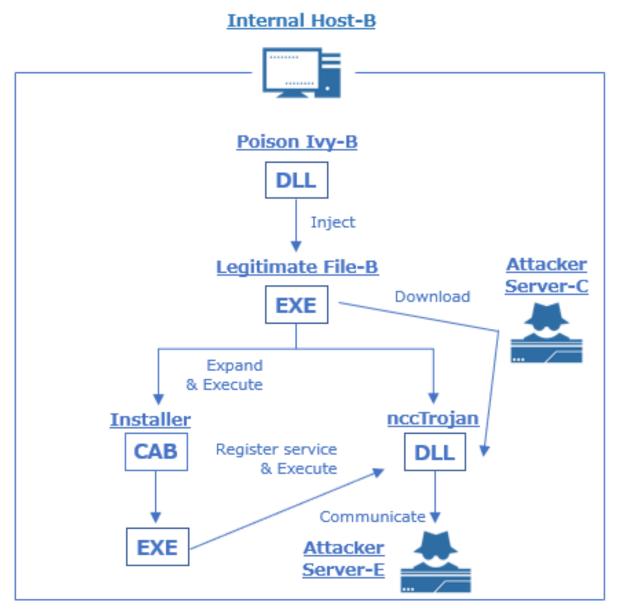

Item	Value
C&C Server	45[.]76.211.18:443
Cac server	45[.]76.211.18:8080
Campaign ID	TOEI
Group ID	TOEI
Mutex	G9u3cUoJs
C&C Traffic Encryption Key (Camellia-256 in ECB mode)	kos@On

C&C Communication

Same characteristics with traffic by the Poison Ivy in Case 1

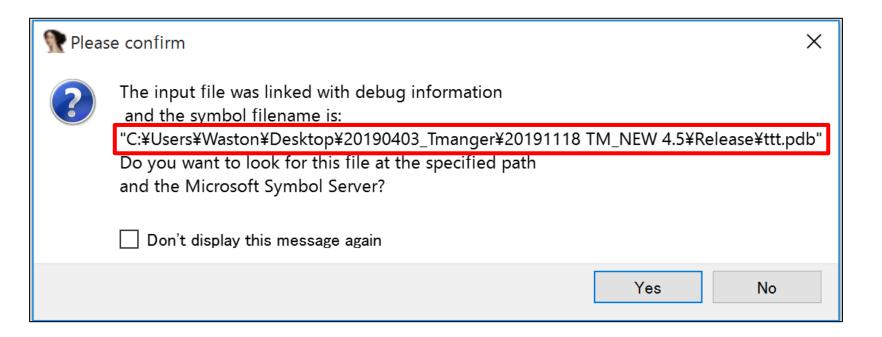
Credential Stealer-B




show.exe

- Windows Credential Stealer (Original Tool)
 - > Steal usernames, domain names and passwords from Isass.exe process.

```
$ show.exe
U: Administrator
    [Reducted]
ps: [Reducted]
U: ANONYMOUS LOGON
DO: NT AUTHORITY
Specific LUID NOT found
U: LOCAL SERVICE
DO: NT AUTHORITY
ps:
```

Tmanger

Evidence

- PDB File Path
 - > Found string "Tmanger" in directory name that would represent this RAT

Startup Sequence and Persistence

- Tmanger "dwm.exe" is placed and executed by Poison Ivy-B.
- dwm.exe drops test.dll by extracting data from its resource section and expands it.
 - %Temp%¥test.dll
- The dwm.exe drops master.exe by copying itself.
 - %Temp%¥master.exe
- The dwm.exe executes the following command.
 - rundll32.exe %Temp%¥test.dll,Entery
- The test.dll creates the following registry key and starts working as a RAT.

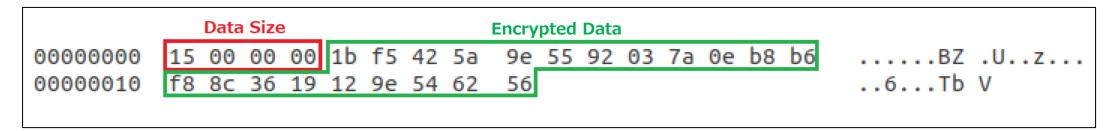
The registry key (Persistence)

Key	Value
HKEY_CURRENT_USER\Software\Microsoft\Windows\Current\Version\Run\Master	%Temp%¥master.exe

Tmanger

Configuration

- Three destinations with the same IP address but different port numbers
- If the first port is unable, Tmanger tries to connect to the second port.


The decoded configuration data

Item	Value				
	172[.]105.39.67:80				
C&C Server	172[.]105.39.67:443				
	172[.]105.39.67:5222				

C&C Communication

- TCP Payload
 - ➤ Data Size (4 Bytes) + Encrypted Data

- Encryption
 - > Algorithm: RC4
 - > Key (512 bits):

アドレス	Hex	ASCII
0093C970	00 OC 7C 17 A7 1C D2 07 DA 9E EE C5 8B 0B D7 86	. §. Ò. Ú. î Å ×.
0093C980	AB 7E 5E 1C 55 C5 6E 2E 75 10 AO FC C2 C8 7A 99	«~^.UÅn.u. üÅÈz.
0093C990	DB 6C 5C B5 2A C6 32 EE 03 C5 4C A4 4D 0A 20 24	01\µ*Æ2î.ÅL¤M. \$
0093C9A0	92 CD D9 CB 8C 89 81 80 A5 90 D1 AF 02 B6 5F 15	. ÍÙË¥.Ñ ⁻ .¶

C&C Communication

- Decrypted Data
 - > Encoded PID (4 Bytes) + Command (1 Byte) + Content

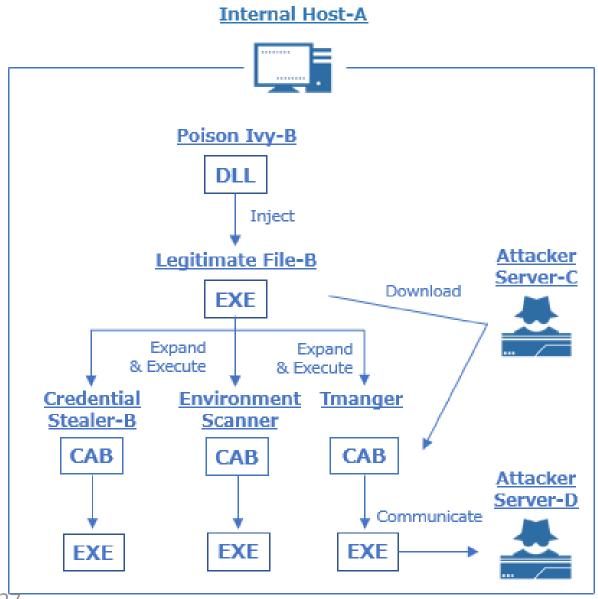
```
Encoded PID Command

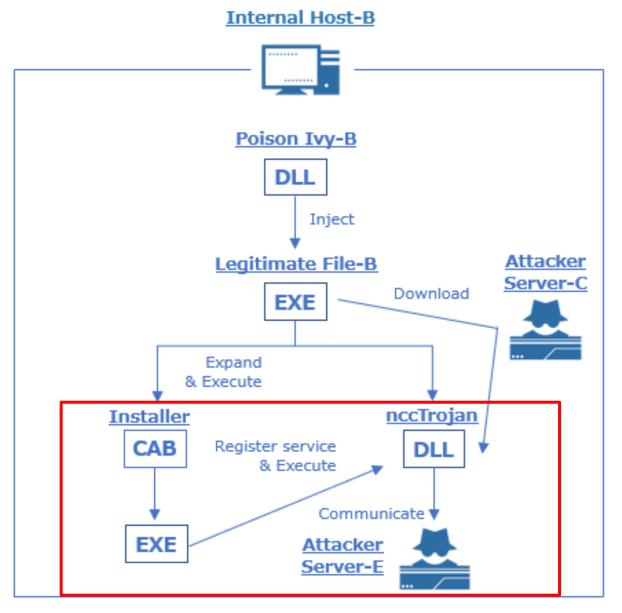
00000000 33 35 34 38 01 80 be 39 00 73 79 73 74 65 6d 69 |3548...9.systemi|
00000010 6e 66 6f 0d 0a |nfo..|
```

Encoded PID

Encoded PID = $((PID \% 9) \times 1000) + ((PID \% 1000) + 1000)$

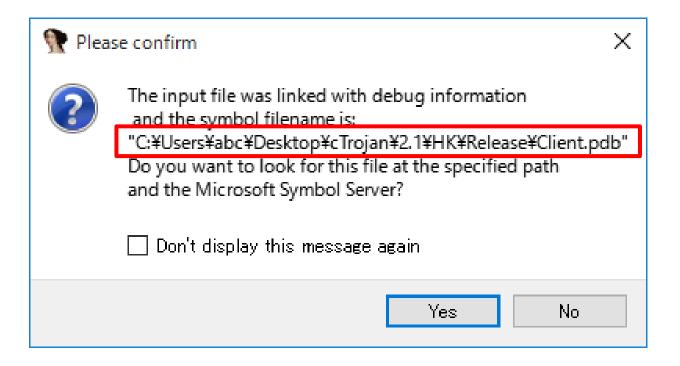
Tmanger




Command and Control

- Tmanger has following functions:
 - Remote Shell (cmd.exe)
 - Remote Shell (powershell.exe)
 - Send Host Information
 - Send File Contents
 - Send Screen Capture Images
 - Delete Files
 - Keylogger

Attack Flow Case 2



nccTrojan

Evidence

PDB File Path

Startup Sequence and Persistence

- Poison Ivy-B places the installer "Instsrv.exe" and nccTrojan "WindowsResKits.dll" on "C:\(\text{ProgramData\(\text{Microsoft\(\text{\center}\)}}\)Crypto", then launchs Instsrv.exe.
- Instsrv.exe copies WindowsResKits.dll to following system directories.
 - %SYSTEMROOT%¥System32¥WindowsResKits.dll (in 32-bit environment)
 - %SYSTEMROOT%¥SysWOW64¥WindowsResKits.dll (in 64-bit environment)
- Instsrv.exe creates and start following fake service.

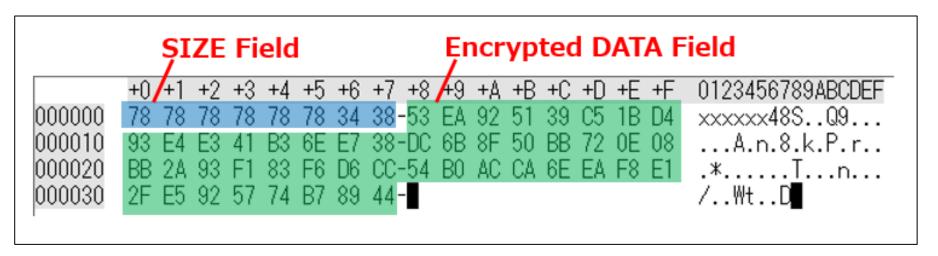
Fake service

Name	Image path
Microsoft Windows Resource Kits	%SYSTEMROOT%¥System32¥svchost.exe -k WindowsResKits

Configuration

Decoded configuration data

Item	Value
C&C Server	45[.]77.129.213:443
Version Information	v2.1[exe]
Activation Code	ncc


Activation

- •If the data received from C&C server includes activation code "ncc", nccTrojan activates its C&C functions.
- •We call the new RAT "nccTrojan" because the activation code is characteristics for this RAT.

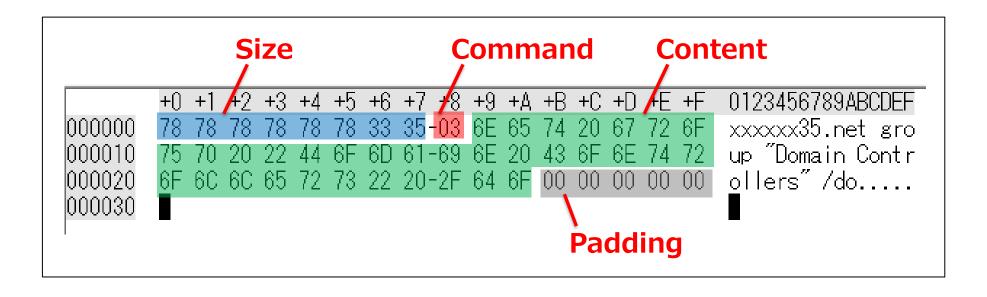
C&C Communication

- TCP Payload
 - ➤ SIZE Field (8 Bytes) + Encrypted DATA Field
 - The SIZE field expresses data size in decimal and unused digits are filled with invalid character "x".

nccTrojan

C&C Communication

- Encryption
 - > Algorithm: AES-256 in CFB mode
 - > Key (256 bits) / Initialization Vector (128 bits):


The encryption key and initialization vector

Item	Value
Key (hex-encoded)	981511371412780969AFC3AB2072018709A83A3332466A8B56FF 3FAB8E6C3DAA
IV (hex-encoded)	2042123224315117031B1A0A3CCDA53F

C&C Communication

- Decrypted DATA Field
 - Size (8 Bytes) + Command (1 Byte) + Content + Padding
 - Size = length(Command + Content)
 - The format of Size field is as same as that in TCP payload.

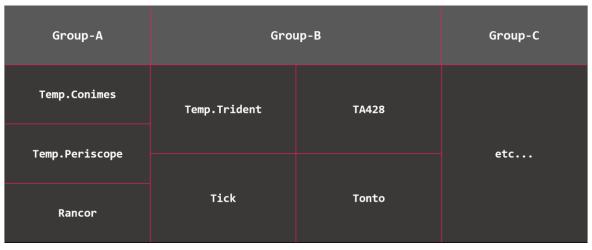
nccTrojan

Command and Control

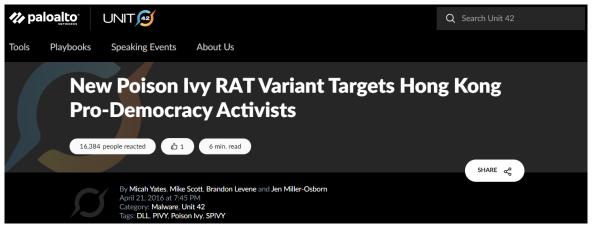
- nccTrojan has following functions:
 - Remote Shell
 - Send Disk Information
 - Send File List
 - Send Process List
 - Download File (Read File)
 - Upload Files
 - Operate Files (Copy, Move, Delete)
 - Kill Process

Wrap up

Correlation: Colorful Panda Footprint



Royal Road RTF Weaponizer


- Used by Chinese APT groups
 - > Temp.Trident, Tick and Tonto
 - Mainly targeting East Asian countries

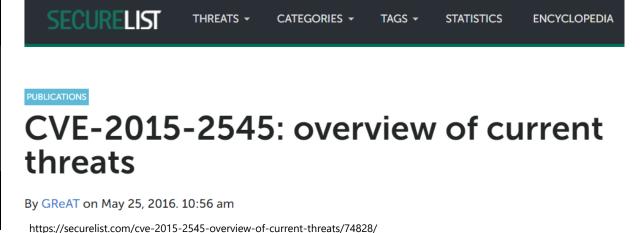
Poison Ivy

- SPIVY
 - Modified traffic structure
 - Previously used in Hong Kong in March 2016
 - Used same DLL Side-loading technique "RasTls.dll"

https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road.html

https://unit42.paloaltonetworks.com/unit42-new-poison-ivy-rat-variant-targets-hong-kong-pro-democracy-activists/

Correlation: Colorful Panda Footprint



DLL Side-Loading

- PotPlayerMini
 - Previously used by DragonOK
 - DragonOK targets East Asian countries

https://unit42.paloaltonetworks.jp/unit-42-identifies-new-dragonok-backdoor-malware-deployed-against-japanese-targets/

As a result of analyzing the observed attack cases, we found the following:

- Operation LagTime IT has been observed since at least around March 2019 and its TTPs hasn't changed for more than a year
- Used a tool to exploit MS17-010 for lateral movement, NETBIOS scanner for environmental investigations, tools to steal credentials and new RATs such as Tmanger or nccTrojan
- Colorful Panda Footprint (the TTPs of these attack cases overlap with those of several Chinese APT groups)
 - ➤ Tick, Tonto, DragonOK

Appendix 1: Release of Decryption Tools

Traffic Decryption Tools for Tmanger & nccTrojan

- Later, we will announce the download site on our Twitter account
 - @GlobalNTT_JP (https://twitter.com/globalntt_jp)

Appendix 2: IoC

Case 1

- MD5
 - f1b21f5f9941afd9eec0ab7456ec78b8 (Lure Document)
 - b26b60c8ba87df6322fa48916b7ba86d (Poison Ivy)
 - > 8fa6b43e35675b05bd4cbe8a9e9413b8 (Credential Stealer)
 - f01a9a2d1e31332ed36c1a4d2839f412 (Environment Scanner)
 - 11b2e94fdac1ff94899debbcf63c33aa (Cotx RAT)

Domain

- news.vzglagtime[.]net (Attacker Server-A)
- mtanews.vzglagtime[.]net (Attacker Server-B)

Appendix 2: IoC

Case 2

MD5

60ec80e7e72afa9a24c48517d9e97f4c (Lure Document) 7372101f6423ee4226b83cca12b13bb9 (Poison Ivy-A) 8fa6b43e35675b05bd4cbe8a9e9413b8 (Credential Stealer-A) f01a9a2d1e31332ed36c1a4d2839f412 (Environment Scanner) 11b2e94fdac1ff94899debbcf63c33aa (Cotx RAT) d00d8f1c6ee37d86dd78bbbee328878c (Scan Tool) > 78ea3649a05f241516288603e5305a79 (Exploit Tool) bcfd4ebf4856ae2eeba1604fd243d522 (Poison Ivy-B x86.dll) 7dfae85cb034a2ee5c715530e163b35d (Poison Ivy-B x64.dll) 4993e67fcabaf949380196fabe004fd4 (Credential Stealer-B) 8a79aeaed654e96d86fbe1bbc1e9de84 (Tmanger) c999b26e4e3f15f94771326159c9b8f9 (Installer)

54816d2dcc0275e30c615cc44f52df6b (nccTrojan)

Appendix 2: IoC

Case 2

- Domain & IP
 - > 95[.]179.131.29 (Attacker Server-A)
 - mtanews.vzglagtime[.]net (Attacker Server-B)
 - > 45[.]76.211.18 (Attacker Server-C)
 - > 172[.]105.39.67 (Attacker Server-D)
 - > 45[.]77.129.213 (Attacker Server-E)

Thank you