
Lightweight emulation based IoC extraction
for Gafgyt botnets

Ya Liu

Outline

• Background

• Gafgyt C2 loop

• Emulating initConnection() to get C2

• Analyzing Mirai code in Gafgyt

About Gafgyt

• firstly emerged in 2014

• also known as Qbot, BASHLITE, LizardStresser

• an earlier IoT botnets than Mirai

• A IRC like C2 protocol is used

register

command

Why so many Gafgyt variants?

Developing a new Gafgyt variant is just a process of “Ctrl+c” and “Ctrl+v”.

Fast emerging while short living

• It kept active from mid-April to mid-June
• 2 versions have been found

• 31 campaigns were detected, with 572 samples captured from

12 download servers

• 13 C2 servers were found

IoC extraction

• Quick IoC extraction would play an important role in fighting Gafgyt

like fast emerging while short living threats

• Current solutions include sandbox based and static analysis based

• Issues of sandbox based IoC extraction:

– deploying sandboxes of multiple CPU architectures

– needing to know fixed patterns of C2 messages in advance

– potentially impacting other systems due to scans initialized by samples

• Static analysis based solution has the issue of signature explosion

About lightweight emulation

• LWE: Lightweight Emulation

Sandbox LWE

Is dynamic analysis? yes yes

Targets PE、ELF、DOC、… code snippet

Instruction-level
instrumentation

Not necessary MUST

Are syscalls provided? MUST No, or partially provided

Time a few minutes a few seconds

Output behavior reports, PCAPs logs of executed instructions, CPU
registers and memory snapshots

2 prerequisites for LWE based extractions

1. Fixed behavior patterns can be concluded from interested code

• C2 communication code

2. The target code can be located in an automatic manner

– Such locating must be independent of static patterns

– CFG patterns are recommended

Locating
functions

Emulating
functions

Post
analysis

LWE engine

https://www.unicorn-engine.org/

https://www.unicorn-engine.org/

Gafgyt C2 loop

C2 loop in main()

• Loop1：initConnection() -> sleep()
• Loop2: initConnection() -> getBuild() -> sockprintf() -> recvLine()

C2 loop: "[initConnection][] -> [getBuild, sockprintf]["BUILD %s"] -> [recvLine][] -> [][]"

A summary of C2 loop

• It’s characteristic enough to be used to distinguish Gafgyt from

other families, e.g., Mirai

• With C2 loop, we can:

– directly get the register message template string

– find the initConnection() function for further emulation to get C2

• This function is responsible for establishing C2 connection

• It can be found by traversing control flow graph (CFG) of the

main() function with IDA Python or radare2

– graph algorithms, e.g., depth-first-search, are used

C2 loops vs variants

• C2 loops also vary across variants

• Common C2 loops can be summarized into 6 types according to

their CFG patterns

– block number

– called functions

– referenced strings

"[initConnection][] --> [jprintf]["arch %s", "unknown"] --> [recvLine][] --> [][] "
"[initConnection][] --> [][] --> [recvLine][] --> [][] "
"[ec hoconnection][] --> [][] --> [recvLine][] --> [][] "
"[initConnection][] --> [sprintf, sockprintf]["fftt:%s"] --> [recvLine][] --> [][] “
"[Connection, botkiller, recv_buf][] "

Examples of type 1~3
type 1

"[initConnection][] -> [sockprintf]["3", "BUILD %s"] -> [recvLine][] -> [][]"

"[initConnection][] -> [getBuild, sockprintf][" 0i&", "BUILD %s"] -> [recvLine][]"

type 2

"[echoconnection][] -> [][] -> [recvLine][] -> [puts]["UPDATING", "ECHOBOT"]"

"[echoconnection][] -> [][] -> [recvLine][] -> [][]"

type 3

"[recvLine][] -> [initConnection][] -> [sockprintf]["BUILD %s", "DONGS"]"

"[viron][] -> [initConnection][] -> [sleep][]"

C2 loop stats on 116,677 samples

93140

4344

17418

801 333 641

About register message template

• It’s used to generate the register message with sprintf()

• Hundreds of template strings have been found

• They are useful to detect Gafgyt C2 communication from network

traffic

• Therefore template string is one of the extraction goals

BUILD ART OF WAR
BUILD BLACKCULT %s
BUILD BOT : %s : %s
BUILD HERAV1 %s
BUILD Pussy Destroyer v911
BUILD [%s:%s:%d]
BUILD [[35m%s[37m] [[31m%s[37m]

[%s CONNECTED] [%s:] [Arch Type: %s]
[BOT] [KETASHI] ---> Bot Joined
[SUPREME]-->[%s]-->[%s]-->[%s]-->[%s]-->[%s]
[!] KATURA [!] ~> [%s] ~> [%s] ~> [%s] ~> [%s] ~> [%s] ~> [%s]
[!] device connected [%s:%s:%s]
[+] Bot Connected - %s - Architecture %s
[+] Joined Hacker!: %s

Lightweight emulating initConnection()

Extracting C2 from initConnection()

The key is to intercept the call to strcpy() to get its argument

of commServer

Emulation steps

1. Initialization

– Setting CPU arch and initializing registers

– Mapping ELF file including code and data

– Installing hooks of UC_HOOK_CODE and UC_HOOK_MEM_WRITE

2. Emulating initConnection() from its starting address

3. Post analysis

– Parsing logged events: call and memory write

– Reading C2 from global memory with parsed address

Instruction level instrumentation

• It is done through unicorn hook of UC_HOOK_CODE

• When encountering a call instruction, it will:

– log the PC together with its arguments for post analysis

– set return value, e.g., EAX in x86 CPU, to zero or a valid memory addr

– skip to next instruction

• When detecting ending address or an address beyond emulation

range, it will stop the emulation

"call", pc=0x0804dc4f, (0x0124eff8, 0, 0x1000, 0)

Hooking memory writes

• It’s done through unicorn hook of UC_HOOK_MEM_WRITE

• Only writes to global memory are logged

– to ignore writes to stack memory

• For each event, the logged information includes PC, write

address, size, and value

"write", pc=0x0804dc8a, (0x080591b0, 0x00000004, 0x00000000)

Post analysis

Another version of initConnection()
#memset
"call", (0x0124efe8, 0x00000000, 0x00001000, 0x10101010)

KHserverHACKER
"write", (0x0051a640, 0x00000004, 0x00000000)

#sprintf
"call", (0x0124efe8, 0x00417f10, 0xc6, 0x90, 0xb5, 0x11)

strchr
"call", (0x0124efe8, 0x0000003a, 0x10101010, 0x00000090)

socket() & connectTimeout()
"call", (0x00000002, 0x00000001, 0x00000000, 0x00000090)
"write", (0x0051aba0, 0x00000004, 0x00000000)
"call", (0x00000000, 0x0124efe8, 0x00000e4f, 0x0000001e)

Behavior patterns and extraction rules

• IoC extraction is actually done in post analysis stage

– applying specific behavior patterns on logged events

– if matched, the extraction rules will be used to get the C2s

• In total, 6 types of initConnection() are concluded

• For each type a extraction rule is defined

– Simplified pattern: for quick matching

– Behavior pattern: for detailed matching

– Extraction rules: actions to execute if matched successfully

An example extraction rule

c: call
w4: 4-byte-write
w2: 2-byte-write

Mirai code in Gafgyt

Variants of Gafgyt + Mirai

scanner_init()
MD5= 00c183e4661881402f3dc90fd9f99c57

processCmd()
MD5= 05af2f5a37f3840ef7441c0f607a390a

Mirai’s Achilles heel

• A custom encrypted configuration db is heavily used in Mirai

• It’s usually copied together with the borrowed code

– The original design is not bad

– Its connections with other modules are too tight to be easily cut

– The authors are lazy, or just don’t know how to cut it

• Therefore it’s possible to analyze Gafgyt+Mirai variants by

analyzing their configurations

About configuration extraction

• It‘s also based on LWE, and was presented on VB2018

– https://www.virusbulletin.com/virusbulletin/2018/12/vb2018-paper-

tracking-mirai-variants/

https://www.virusbulletin.com/virusbulletin/2018/12/vb2018-paper-tracking-mirai-variants/

Gafgyt variant of vbot
https://blog.netlab.360.com/the-gafgyt-variant-vbot-and-its-31-campaigns/

vbot1

vbot2

https://blog.netlab.360.com/the-gafgyt-variant-vbot-and-its-31-campaigns/

Configuration comparison

vbot1 vbot2

Some conclusions on vbot

• Although they shared the same registration code, they were

obviously derived from different code bases

• Since the registration code is characteristic enough, both

versions should have come from the same authors

• The authors have multiple sets of code bases

A summary of extracted configurations

• In total Mirai 16 configurations have been successfully extracted

from 3,700 Gafgyt samples

• With the extracted configurations those samples can be well

grouped

– Each group of sample share the same configuration usage patterns

– In most cases they can be classified as the same variant

• Similar configurations hint potential code sharing

The most common configuration

• It covers 3,347 samples

• Renamed as 36_412_KYTON

– 36 items

– Total size is 412

– Branch name is KYTON

• Some similar ones

– 39_437 , 39_417, 36_431_KYTON,

36_428_Reaper

Stats on other 15 configurations

188

63

36

16 14 14
6 5 3 3 2 2 1 1

Conclusions

• Gafgtyt variants can be recognized with their characteristic C2

loops

• With C2 loops, both register message template and

initConnection() function can be obtained

• C2 information can be got by lightweight emulating

initConnection() together with the concluded behavior patterns

• Gafgyt + Mirai variants can be well analyzed with Mirai

characteristic configurations

Thank you
twitter: @liuya0904

email: liuya@360.cn

