
SHE SELLS ROOT SHELLS BY THE C(++) SHORE

Costin Ionescu

Broadcom, USA

costin.ionescu@broadcom.com

30 September - 2 October, 2020 / vblocalhost.com

www.virusbulletin.com

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

2 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

ABSTRACT
The security industry is well aware of the importance of delivering secure solutions as part of their software offering given
that their applications run with elevated privileges. Sometimes, even with the best intentions and carefully thought out
precautions, blunders still happen.

This highlights the importance of a systemic approach that minimizes the impact of human (or, soon, AI overlord) mistakes.

In this paper we go over some of the existing approaches for hardening software, looking at hardware features, operating
system support, software sandboxing techniques and programming language constructs designed for safety.

We then discuss the approach that the security engines team in the Symantec Enterprise Division of Broadcom took a few
years back to secure engine releases. We’ll describe how clang/LLVM instrumentation is used to produce hardened binaries
which dramatically reduce the risk of remote code execution, denial of service and other attacks, by severely mitigating the
impact of bugs such as buffer overflows, unbounded recursion (stack exhaustion) and infinite loops.

 EXIGENCES OF SECURITY SOFTWARE
When we think of operating environments for security software solutions we usually traverse the spectrum from endpoints
to gateways, appliances on premises or in the cloud, and end with backend systems.

In general, the discoverability of vulnerabilities is in direct proportion to the exposed software surface, which makes the
endpoint a particularly tough cookie. Of course, a vulnerability for a product targeting any part of the spectrum is just as
serious.

A common requirement for security software is the ability to rapidly update the logic used for detection, be it threat
detection or event reporting. Regardless of on which side of the ‘AV is dead’ fence people find themselves, the need for
updating the content is seen for a wide range of content – from AI models to blocklists, string signatures or logic updates in
algorithmic detections.

The team I’m part of deals with delivering scanning engines to our products for the entire spectrum mentioned above and
enables updates to these engines to be accepted several times a day. Quite often these updates are not simple strings or hash
signatures added to a database but rather the implementation of an API in the x86 emulator or a built-in method in the script
emulators to improve behavioural detections.

Since these updates involve new code to execute on a wide range of systems, there are strict requirements for the quality of
the new content. Even with a high bar set for quality, frequent updates mean there are many chances for something to go
wrong, thus hardening the runtime environment is of utmost importance in order to limit unwanted negative effects.

 HARDENING
This brings us to a short review of existing approaches used for hardening software.

There are many aspects that can be used in creating a more robust and better contained application, ranging from hardware
features to OS facilities, compiler code generation options and even the choice of programming language or language
subset to use.

The first line of defence is a concept common to all operating systems – the process. Each process has its own address
space thus naturally guarding against accidental changes to other unrelated applications.

 Inter-process hardening

Processes are usually grouped inside security boundaries (sessions, effective user ID, etc.) to allow interactions to take
place. Especially in the context of a security solution, we want to protect core parts of the application from external
tampering. For an endpoint product the UI needs to be in the context of the user using the desktop but most of the scanning
logic does not need to be in that context. The better control we have over this boundary, the better the security.

Hardware virtualization offers a good opportunity to establish a barrier to prevent tampering. Virtual machines are great for
isolating multiple services running together but sometimes we need something more suitable for isolating a single
application. That led to forms of lighter virtualization, such as the Windows 10 VSM feature (Virtual Secure Mode), which
allows the creation of IUM (Isolated User Mode) processes.

Containers are another great way of keeping the security solution in its own trust zone with less risk of tampering.
Hardware virtualization enables many guarantees to be offered by containers, although even without it there are effective
mechanisms made available by operating systems (chroot in all Unixes, cgroups in Linux, rfork in BSD).

 Process level hardening

The overwhelming success of the von Neumann architecture for most computing systems in almost a century is in big part
due to its amazing simplicity – simple design, simple rules, simple circuits. That also brings some simple problems to deal

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

3VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

with… and, well, some not-so-simple problems too! Code and data are in the same memory which, granted, makes it very
easy to keep telling the computer what to do… too bad humans seem to be notoriously poor at telling computers how to do
what they really need them to do! Furthermore, even when we identify a bug in code we have the tendency to underestimate
the impact it can have – after all, how can writing a single byte over the end of the buffer cause remote code execution?
And why is 0x41414141 [1] so funny?

Even though some architectures adopted early restrictions on treating memory blocks as either code or data it took many
years to achieve widespread adoption following the introduction in commodity hardware by AMD in 2004 with the NX
feature [2]. While NX solved the simple ‘jump to payload’ type of exploits, it led to the rise of ROP (return oriented
programming – formerly referred to as ret-to-libc [3] in the Unix world).

Continuing the exploitation mitigation battle, an important step was made by operating systems in adopting ASLR [4]
(address space layout randomization). This feature requires the introduction of enough entropy in establishing the layout of
memory inside processes to make it hard to achieve reliable exploitation.

Another significant improvement came in the form of compiler support for stack cookies (/GS or -fstack-protector), which
significantly raised the bar for exploitation of stack overflows.

Windows employs a different exception model compared to other operating systems, namely SEH [5] (Structured Exception
Handling) with a post Itanium addition – VEH [6] (Vectored Exception Handling). SEH typically uses the stack (on x86)
and is therefore subject to all stack-related types of exploitation, which prompted Microsoft’s valuable mitigation in the
form of SafeSEH [7] and SEHOP [8] (SEH Overwrite Protection).

In the Unix world, the dominant executable format is ELF which, unlike Microsoft’s PE format, does not allow relocations
in read-only sections. Coupling this with the use of PLT and GOT [9] creates the opportunity for exploitation by
overwriting a single pointer in these tables. GNU’s C compiler and dynamic linker introduced a very effective mitigation
for this type of exploitation, called RELRO [10] (read-only relocations).

All the features mentioned above are commonly available and it is therefore good practice to enable them through relevant
compiler options or runtime opt-in APIs.

Now we can turn our attention to newer technologies that are not so common due to limited hardware or operating system
support. As more systems start to support the technologies it is likely we’ll see an increase in adoption, although in some
cases they also spark the debate of performance vs. safety.

To combat exploitation that relies on out-of-bounds overwrites of function pointers, Microsoft introduced CFG [11]
(Control Flow Guard), which requires the application to be compiled with the required hardening instrumentation turned on
(/guard:cf) and a little help from the operating system to enforce runtime checks. The idea is to have every indirect call
instrumented to go to a stub which checks if the call target is in a sparse bitmap of allowed targets. This implies a small
performance cost, which constitutes a barrier for adoption. Some important limitations of the technology are around dealing
with loaded modules that are not CFG-enabled (which become trees with juicy low-hanging ROP gadgets) and the way
functions with unaligned addresses can be treated (due to the need to reduce the bitmap size). Nonetheless, CFG
significantly increases the difficulty of exploitation when employed appropriately.

Looking at architectural features meant to lower the performance impact of software mitigations, an interesting attempt
was Intel MPX [12] (Memory Protection Extensions), which was introduced in 2015 with the Skylake generation of
processors. The intent was to address exploitation of buffer overflows simply by recompiling legacy C/C++ applications
to use MPX-specific instructions for performing bound checking based on information inferred from the compilation
stage. This entailed a massive effort to design and include in silicon such a non-trivial extension and to add support in
ICC and GCC. All that came to an abrupt stop in 2018 when GCC removed support for MPX, the reason being a mix of
performance, memory consumption and efficacy when compared to other instrumentation techniques, in particular
ASan [13].

Intel MPK (Memory Protection Keys) is a hardening feature that brings the ability to change permissions for memory
ranges without altering page tables (which impose significant performance penalties). This allows interesting uses, such as
having components protect the structures they manage from accidental or malicious tampering from other code in the same
process. Another use is marking code as XOM (executable-only memory), preventing dynamic gadget lookup for JIT-ROP
attacks.

Another technology mostly meant to provide privacy is SGX [14]. It targets components that deal with secrets like
cryptographic key manipulation or DRM-type of workloads. However, this opens up the opportunity of using this extension
for the purpose of partially sandboxing code since exceptions there are trapped and exposed through a single exit point.

A more recent Intel extension tackles the ability to tamper with the call stack where function returns end up being
attacker-controlled (most notably in ROP exploits). This feature, named CET [15] (Control-flow Enforcement Technology),
requires hardware and operating system support in order to manage a shadow stack containing only the call stack and alters
the function of standard opcodes like CALL and RET. The purpose is to maintain the call stack and to fault when
encountering discrepancies between the shadow stack and the return addresses from the traditional stack.

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

4 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 In-process management of multiple security domains

Applications that support plug-ins or extensions have to deal with defining the security restrictions that apply to the core
components of the application versus the pluggable modules. This model is often encountered in the context of security
solutions where important functionality is enabled as plug-ins delivered through updatable channels. However, even when
full trust is assumed between the hosting component and the plug-ins, additional guardrails are desired to prevent one
plug-in from taking down the entire application.

A more challenging case is when third-party plug-ins need to be fully isolated from each other and from the core
application. This is encountered in the browser world where security boundaries are defined around each domain of each
browser tab and fast sandboxed execution of arbitrary third-party code is desired.

One of the efforts that brought a lot of attention to the idea of using statically typed languages to target a sandboxed
environment is Google’s NaCl project [16] (Native Client). This technology uses a modified GCC toolchain to produce
instrumented binaries. The binary format enables easy verification of certain rules such that sandbox escapes are prevented.
These instrumented binaries containing native code are then delivered to the target platform. Serving platform-specific
binary code was not well received in the context of the ‘open web’. This led to the second iteration, dubbed PNaCl
(Portable Native Client), where the same portable bitcode executable is delivered and compiled ahead of time for the target
by the browser before execution. PNaCl uses the LLVM compiler infrastructure for generating binaries and requires a large
hosting component responsible for generating the executable code ahead of time. Aside from the sandboxing capabilities, a
great advantage of NaCl/PNaCl is the near-native speed, which makes it very attractive for delivering a safe environment
for securely running plug-ins.

PNaCl did not gain traction [17] with Chrome’s competitors and we saw the asm.js [18] project gaining a bit more
popularity due to its approach of trying to get code compiled into a JavaScript subset guaranteed to be understood by all
browsers. The performance of asm.js compiled code, although significantly lower than NaCl, can be accelerated by
browser-specific optimizations. Similar to PNaCl, asm.js target code is usually compiled using an LLVM derived toolchain
– emscripten in this case.

A more recent effort, coordinated by Mozilla, is WebAssembly – a successor in spirit of asm.js. LLVM is used to compile
code from C, C++ and Rust to a portable executable format that all major browsers agreed to understand. WebAssembly
offers a clear, well defined virtual architecture which allows a relatively straightforward JIT engine implementation to
support execution (the use of the word ‘straightforward’ next to JIT is bound to raise some chuckles).

Given its growing popularity, WASM is a very attractive technology for delivering arbitrarily complex sandboxed
functionality.

 SAFETY FEATURES OF PROGRAMMING LANGUAGES

All technologies described above attempt to contain the potential damage a vulnerability can cause but do not tackle the
source problem – the presence of vulnerabilities.

While the C language carries the blame for enabling most common types of vulnerabilities it also wears the crown for
lifting programming from machine-specific assembly to low-level portable code.

C++, with its promise to stay mostly compatible with C, allows most of the same mistakes to be made. However, its higher
abstractions make it easier to use constructs that prevent some of the common C mistakes. Among the C++ idioms and
features most often mentioned for helping with code safety are RAII [19] (resource acquisition is initialization) and smart
pointers (unique_ptr, shared_ptr; not the first incarnation fiasco auto_ptr). The many benefits of C++ are countered by the
sheer magnitude of language surface with many intricacies that sometimes surprise even experienced C++ programmers.
C++’s amazing track record of backward compatibility combined with the three-year cadence for new features often
translates into challenging maintenance of long-lived projects.

Using such safety-challenged languages like C or C++ nowadays is considered dangerous without the use of modern
compiler features and techniques during the development cycle such as:

• Warnings-as-errors and high warning level during compilation

• Static code analysers

• Code coverage

• ASan (address sanitizer) instrumentation

• Refactoring tools like clang-tidy to lift outdated constructs into following current best-practice idioms

• Fuzzing (libFuzzer [20], AFL [21]).

While all the above have the merit of raising the bar, the fact that we can obtain a binary subject to memory corruption and
concurrency issues means some of these vulnerabilities will slip through.

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

5VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

A relatively new language that is designed around the idea of preventing memory corruption and concurrency issues is Rust
[22]. One of Rust’s core ideas is that aliasing and mutability are mutually exclusive. This restriction dramatically changes
the way an application is designed and implemented, usually guiding the development through a long set of compilation
errors. Coupling this core rule with enforcing ‘no undefined behaviour allowed’ eliminates the risk of exploitation for a
large set of vulnerability classes.

Given its focus on safety, Rust should be at the top of the list when we consider adding new components to our security
solutions.

Rewriting an entire application in a different language represents a major barrier for adoption of the new language. This is
why Rust offers several features to make it somewhat easier to integrate Rust code in an existing application. Interacting
with C interfaces is supported through Rust’s FFI [23] constructs. Calling into C++ code must be done by exposing extern
‘C’ linkage functions.

Equally important is the ability to call Rust from C/C++, which can be done by using the system ABI for interface
functions [24].

A common misconception about its safety is that Rust applications do not crash – this is inaccurate. Operations that cannot
be proved at compile time to be safe and do not violate the language rules end up being compiled with implicit runtime
checks that panic [25] on error. For instance, using an external input to index an array can only be done safely if the index
is checked at runtime to be within bounds.

As mentioned earlier, a key difference compared to C/C++ is the very different stance on undefined behaviour. In Rust
something that has the potential to cause undefined behaviour gets a runtime check that forces the application to abort
before the undefined behaviour can take place. A well written, bug-free application would not trigger these implicit panic
calls but if it does contain a bug the risk of exploitation is virtually eliminated by having a controlled takedown.

This brings a valid concern when mixing legacy C/C++ with Rust, as crashes can still happen on insufficiently high-quality
Rust code. Luckily, Rust offers a very powerful mechanism to recover from faulty Rust code logic without necessarily
bringing the process down through the catch_unwind [26] mechanism.

 CP3: A SAFE EXECUTION ENVIRONMENT
One constant challenge that we face in the static scanning technologies team is around providing algorithmic detection
capabilities as updatable content without requiring changes to the engine side. Over the decades we had engines that
included various interpreters to allow custom logic but they had a domain-specific language, were very limited, and the
performance was far from native. A more flexible in-house solution gave us the benefit of writing code in a subset of C++,
but even that was tens of times slower than similar functionality compiled natively. As the threat landscape evolved we
found ourselves needing to generate more and more custom detection logic content and the limitations of existing
technologies required a careful balancing act between speed and flexibility.

The significant growth of code size in order to effectively tackle emerging threat vectors also brings a growing risk of
exploitable vulnerabilities.

All these factors constituted a great motivator for developing a solution that limits the attack surface by allowing the
transition of most complex logic under the guardrails of a sandboxing solution.

The innovation spree that engulfed the compiler world in the last decades sparked new opportunities, which led us to a
pragmatic solution that combines flexibility, performance and safety.

A great merit for triggering the compiler revolution lies with the LLVM project. As usual when humans are involved, there
is also a good chunk of politics that goes into the mix, in this case Apple’s strong support for LLVM being a direct result of
GNU’s change of licence from GPL2 to GLP3 for the GCC project. Nonetheless, LLVM’s modular design led to its
success, bringing also massive opportunities around tooling and code instrumentation.

To create a safe execution environment for dynamic content while minimizing the risks for the stability of the host process
we need mainly two ingredients: a way to instrument code modules for containment of potential vulnerabilities and a
hosting library to load, execute and enforce the sandboxing rules.

Another design goal is not to introduce a large amount of new code required for key safety features. That tips the balance
against having some form of portable executables that get JIT’ed in the host process due to the inherent complexity of the
JIT compiler.

 Instrumentation

CP3 project started as an experiment on playing with LLVM’s IR (intermediate representation) [27]. The intent was to
create an instrumentation layer that allows the compiling of arbitrary C/C++ code and produces a hardened binary
guaranteed not to corrupt anything outside an assigned portion of memory in the host process. This would allow execution
of such instrumented modules while minimizing the risk of bringing down the process.

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

6 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

LLVM’s pluggable compilation process makes it easy to instrument code at various stages and we opted for performing
simple transformations of the IR code. This means that all the complexity of the language (C++ in particular) is already
dealt with from LLVM’s front-end compiler (clang). Similarly, all particularities of the target platform are handled by
LLVM’s backend. Injecting our instrumentation before the optimization stages still gives us a free ride for obtaining
optimized output.

The approach that LLVM takes to be well suited for optimizing code is by having a virtual architecture for the IR with
infinite ‘registers’ operated in SSA [28] form (Single Statement Assignment).

 Memory safety

An interesting quality of LLVM’s IR is the very limited set of opcodes that interact with memory (load, store, fence,
cmpxchg, atomicrmw). If we instrument this handful of opcodes to constrain what memory is accessed we can set a
boundary for the in-process sandbox. There are also variations we can consider depending on the level of trust we have for
the instrumented binary. For instance, we can restrict only writes but allow reads from anywhere in the process if we want
to reduce the overhead of making data available to the instrumented module, or we can choose a more robust isolation layer
where reading can happen only from the same sandboxed area.

 Local variables and stack usage

Since we are merely instrumenting the code in the intermediate representation, we have to abide by the target platform’s
ABI rules. This implies that we have the real thread stack used during execution. Mutable local variables require writing
into the current stack frame and the call stack is just around the stack frame’s corner. So if we want to write local variables
then it looks like we must move the stack inside the sandboxing zone since all writes are restricted to it. Moving the entire
stack would, of course, bring the risk of corrupting the call stack integrity by exposing saved registers and return addresses,
defeating the purpose of the sandbox.

Looking again at LLVM’s IR language we can observe that all mutable local variables are obtained by using a specific
opcode: alloca. This property gives us the opportunity to instrument all alloca occurrences for the purpose of selecting
items that normally live on the real thread stack and move them somewhere else, namely inside the sandboxing area.

A consequence of this design choice is that typical stack overflows now become overflows in an area separate from where
important code flow information is stored (saved registers and return addresses). The native thread stack is never directly
manipulated by our instrumented memory writes, but it is still used by the generated code to simulate operating on IR’s
virtual registers.

Let’s look at a simple example of a program vulnerable to buffer overflow:

Figure 1: Program vulnerable to buffer overflow.

When we debug the program shown in Figure 1 we see what happens on sufficiently large input.

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

7VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 2: Debugging shows what happens on large input.

Figure 3 shows the output when running the unoptimized program under CP3, illustrating how the buffer overflow from
one stack frame spills the caller’s stack frame without affecting the call stack.

Figure 3: Output when running the unoptimized program under CP3.

Fun ction call restrictions

In C and C++, from the language point of view, violating ODR [29] (one definition rule) leads to undefined behaviour. In
practice, most ABIs allow the passing of a mismatched number of arguments to functions and successful return from those
functions and that is allowed mostly from the desire to handle C variadic functions. A notable exception is Microsoft’s ABI
for x86 where certain calling conventions (stdcall, fastcall) require the callee to clean the stack up, which means a
mismatch ends up returning to the caller in an unexpected stack state.

This problem is easier to encounter when using C, as symbols are marginally decorated. One may think that the decorations
are enough to guarantee stack consistency (stdcall and fastcall append a number matching the size of a struct containing all
function arguments). This is not true, however, if we look at the following example:

int __fastcall square (double num) { return num * num; }

int __fastcall mul (int a, int b) { return a * b; }

Both functions receive the same decoration but they adjust the stack with a different amount on return. Here is the output
using Compiler Explorer [30]:

_num$ = 8 ; size = 8

@square@8 PROC

movsd xmm0, QWORD PTR _num$[esp-4]

mulsd xmm0, xmm0

cvttsd2si eax, xmm0

ret 8
@square@8 ENDP

@mul@8 PROC

imul ecx, edx

mov eax, ecx

ret 0
@mul@8 ENDP

Apart from stability issues, calling functions with mismatched prototypes still represents undefined behaviour, which gives
the compiler the right to do anything if it detects it… including calling abort.

It is therefore desirable to detect such situations. One approach is to mimic C++’s decoration scheme, and detection of
mismatched calls takes the form of missing symbols at link time. Another approach is to build a table of function signatures

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

8 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

and verify invocations. Since function calls can involve different translation units, the verification needs to happen as a
separate step, ideally before linking.

Ind irect calls

Ensuring call stack integrity for indirect calls is a trickier problem to overcome as function pointers are commonly used in
non-trivial programs. Structures containing function pointers are ordinary in the C world, whereas C++ virtual function
tables are essentially the same. Another complicating factor is the language’s ability to freely cast between integers, data
pointers and function pointers of arbitrary prototypes.

In order to solve this challenge we need to introduce runtime instrumentation for validating that a call target is indeed
matching the caller’s expectations. This can be achieved by using some form of identifiers to replace function pointers and
the call operation becomes a sequence of identifier validation, translation of identifier to real function pointer and
ultimately the actual call.

Here is an example where we mutate a function pointer and call it:

Figure 4: Example where we mutate a function pointer and call it.

Running a native build seems to allow the second call (starting four bytes into greet2) to run partially then crash in a nested
call:

Figure 5: Running a native build seems to allow the second call to run partially then crash in a nested call.

Under CP3, this (carefully contrived) example simply ends up calling a different function of the same prototype due to
‘accidental’ collision with another valid function identifier. Here is the standard error content:

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

9VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 6: Standard error content.

Most often, function pointer manipulations end up generating a call to a stub that aborts execution but in the worst case
they can end up calling a compatible function. It is important to note that only a function whose address has been explicitly
passed as data receives an identifier making it eligible to become the target of an indirect call.

Callin g outside the sandbox

It is not hard to imagine a scenario that involves the sandboxed task needing to interact with the host, for the purpose of
accepting new input or notifying the host through a callback type of function.

Allowing unguarded external calls would obviously defeat the safety of the sandbox, so special precautions need to be
employed.

One possible solution is to treat such external functions in a similar fashion to module imports that have pre-assigned
identifiers to allow indirect calls and have the real pointers filled in by the hosting library.

Another option is to allow the static linking of a small helper library that does not go through the same instrumentation and
that library is trusted to call anything in a predefined list of interface functions.

Timeou t protection

Preventing overly long computational loops is desired to mitigate the risk for denial-of-service vulnerabilities. A robust
solution cannot rely only on checks performed when entering functions as illustrated here:

for (;;);

A simple implementation could inject a check at the end of each code block, whereas a more complex approach can look at
the code block graph to reduce the number of locations that need to introduce checks.

Alternatively, if feasible, we can leave the code uninstrumented and rely instead on the hosting library to trigger the
forceful termination of the sandbox when desired.

Suppor t libraries

So far we have a way of writing code that has only very limited interaction with functionality not contained in the program
itself. This is fine for free-standing code but can be quite limiting if we cannot reuse existing code that assumes a normal
hosted environment.

Since we require instrumentation to enforce safety this means we cannot simply link our code with standard C/C++
libraries. However, the benefits of using standard library functionality justify the effort of making the standard libraries
available to the sandboxed environment. That can be achieved by compiling some form of a libc and libc++ libraries where
lowest level APIs are customized to call outside the sandbox through a controlled interface.

For the standard C library there are several options available with varying degrees of ease-of-integration and licensing
requirements: uclibc, dietlibc, musl, newlib, bionic, glibc.

In the case of C++ there is one library in particular that comes to mind after working so much with LLVM and that is
LLVM’s own libc++.

Hostin g library

Now that we have a hardened binary all we need is the supporting component to load, unload, execute and enforce the
desired runtime guarantees.

To guarantee host process stability we have to deal with several low-level aspects like trapping hardware exceptions, timing
out or stack exhaustion.

Trappi ng exceptions

Hardware exceptions are presented to user-mode code in different ways depending on the host operating system and
architecture.

For Windows, SEH is the common way of trapping hardware exceptions, however SEH frames can be registered by the
sandboxed module as part of try/catch statements. To avoid the risk of adverse effects from sandboxed SEH frames, VEH
can be used as it has priority over SEH. To recover from the exception state we can alter the CONTEXT structure to resume
execution from a known good state saved at the time of entering the sandbox.

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

10 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

On Unix-like systems hardware exceptions are delivered as signals. Several relevant signals need to be trapped in order to
catch memory access violations (SIGSEGV, SIGBUS), aborts (SIGABRT), breakpoints potentially resulting from compiler
intrinsics (SIGTRAP), division and floating point errors (SIGFPE) or unsupported instructions (SIGILL). Recovery from
the signal can be done using siglongjmp() to a state saved using sigsetjmp() at the time of entering the sandbox.

Timeou t protection

If timeout instrumentation is employed then the sandboxing host needs to merely flip a kill-switch variable that is verified
by the checks inserted by the instrumentation.

Alternatively, we can come up with creative ways of coercing the thread running the sandbox to trip a fault that we monitor
such that the execution returns safely to the host code allowing proper cleanup of all resources held by the sandboxed
module.

On Windows this involves multithreaded gymnastics with APIs like SuspendThread and SetThreadContext. On POSIX
compliant systems pthread_kill can serve the same purpose.

Calling back into the host during sandboxed execution means additional care must be employed to prevent unwanted
termination of the sandbox while running non-sandboxed code without leaving the application in a broken state.

Stack exhaustion

Large stack frames, unbounded recursion are only a few ways to exhaust a thread’s stack.

Initially this seemed a simple problem to overcome as stack probes are not a new concept.

On Windows there is even a special exception code for stack overflows triggered by probing the bottom pages of the
thread’s stack: EXCEPTION_STACK_OVERFLOW.

However, this feature turns out to be inadequate for the general handling of stack exhaustion. If the stack gets close enough
to the boundary page at the stack bottom and the sandboxed code causes an exception to be delivered, the same stack is
used to dispatch the exception. However, at this point the boundary may be reached while in ntdll.dll trying to dispatch the
first exception and while holding an internal critical section. This implies that simply resuming execution from a known
good state is still subject to deadlocking.

Normal thread stack: Stack during broken stack overflow delivery:

used stack pages

almost all stack used
current guard page

unused stack pages

last regular stack page
ntdll frames for dispatching an exception in user code

pages for delivering stack
overflow exceptions ntdll frames for dispatching EXCEPTION_STACK_

OVERFLOW in ntdll code

guaranteed gap page guaranteed gap page

The solution we opted for was to instrument function entry blocks to abort if the stack pointer goes under a safe limit.

Unix-like systems do not detect stack exhaustion explicitly, leaving it to be treated like a normal page fault. Also, signal
delivery happens normally on the same thread stack, which is at risk of being exhausted. Luckily, the sigaction POSIX
mechanism offers the option of delivering these signals on an alternate stack, making handling much easier than on
Windows. That being said, complications still arise from lack of page probing for large function stack frames. Luckily, the
Rust language core team also encountered this problem, prompting the LLVM team to offer an attribute that causes stack
probing checks to be inserted during code generation. Even though the ‘-fstack-check’ switch in clang remained a no-op we
can use the LLVM instrumentation to tag functions with the much needed stack probing attribute.

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

11VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

 Comparison with similar technologies

According to documentation found on the official project site, Google’s PNaCl generated binaries for AMD64 are
achieving 25% overhead compared to the same code compiled natively [31]. The overview page for NaCl/PNaCl [32]
mentions even better results: ‘Running at speeds within 5% to 15% of a native desktop application.’

WebAssembly’s performance [33] depends on the browser implementation and research shows that, on average, it runs with
an overhead of 45% in Firefox and 55% in Chrome, with the worst case exceeding twice the native execution time (over
100% overhead).

CP3’s observed performance ranges from 10% to 35% overhead with an average of 15%, making it a competitive solution.
Aside from the performance aspect an important factor for the adoption of this technology was the fact that the hosting
library is relatively small compared to a component that dynamically generates code at run time.

 Applications

Providing standard C/C++ library support enables us to include arbitrarily complex programs and even gives us the option
of using other complex libraries as long as we can compile them.

We have tried this technology in the field for several years now, going through a few iterations of feature development and
performance optimizations.

Being developed by the team that owns the static scanning engines, we started with moving the more
performance-demanding components running orders of magnitude slower under the legacy interpreter, such as the
components related to machine learning.

The safety of CP3’s in-process sandbox allowed us to deliver the JavaScript emulation engine in a short amount of time
while continuously delivering improvements without being constrained to the native engine update cycle that allows three
to four iterations per year.

Having the ability to rapidly update sandboxed programs motivated us to transfer even the revamped x86 emulator as a CP3
compiled module. The x86 emulator already had the ability to support content updates for the emulated environment,
allowing us to implement new APIs and deliver them through normal definition updates. The functionality introduced that
way is emulated, thus runs at a speed significantly slower than native. However, moving the emulator to CP3 allowed us to
add new functionality outside the emulated environment, this time running at near-native speed.

We are drastically simplifying the core engines by moving all complexity under the protection offered by the sandbox – be
it parsing complex file formats, emulation, command line scanning, etc.

The success we experienced in the case of scanning engines prompted us to expand its usage to other product areas that can
benefit from this technology. This allows us to significantly reduce the exploitation risk for in-house or third-party code that
we integrate.

 CONCLUSION
Unquestionably, the code safety of any security solution is paramount. It is our responsibility to use best practices when it
comes to security from the early stages of development to establishing containment boundaries at runtime.

The emergence of languages focusing on security like Rust should definitely be a top consideration when developing a new
component. For existing code, which in the realm of security software is overwhelmingly C/C++, employing modern
tooling for testing during development is of great importance.

Given the constant growing complexity of the solutions we offer, moving as much functionality under additional layers of
safety can make a huge difference in quality and robustness.

For the security engines team in Symantec, CP3 enabled us to rapidly develop, deploy and continuously improve key engine
functionality to tackle the challenges of the threat landscape.

REFERENCES
[1] Why is 0x41414141 associated with security exploits? Stack Exchange. https://security.stackexchange.com/

questions/18680/why-is-0x41414141-associated-with-security-exploits.

[2] Executable space protection. Wikipedia. https://en.wikipedia.org/wiki/Executable_space_protection.

[3] Getting around non-executable stack (and fix). Seclits.org. https://seclists.org/bugtraq/1997/Aug/63.

[4] Address space layout randomization. Wikipedia. https://en.wikipedia.org/wiki/Address_space_layout_
randomization.

[5] Structured Exception Handling. Microsoft Windows Dev Center. https://docs.microsoft.com/en-us/windows/win32/
debug/structured-exception-handling.

SHE SELLS ROOT SHELLS BY THE C(++) SHORE IONESCU

12 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

[6] Vectored Exception Handling. Microsoft Windows Dev Center. https://docs.microsoft.com/en-us/windows/win32/
debug/vectored-exception-handling.

[7] Microsoft-specific exception handling mechanisms. Wikipedia. https://en.wikipedia.org/wiki/Microsoft-specific_
exception_handling_mechanisms.

[8] Preventing the Exploitation of Structured Exception Handler (SEH) Overwrites with SEHOP. Microsoft Security
Response Center. February 2009. https://msrc-blog.microsoft.com/2009/02/02/preventing-the-exploitation-of-
structured-exception-handler-seh-overwrites-with-sehop/.

[9] PLT and GOT – the key to code sharing and dynamic libraries. Technovelty. May 2011.
https://www.technovelty.org/linux/plt-and-got-the-key-to-code-sharing-and-dynamic-libraries.html.

[10] RELRO – A (not so well known) Memory Corruption Mitigation Technique. Trapkit. February 2009.
http://tk-blog.blogspot.com/2009/02/relro-not-so-well-known-memory.html.

[11] Control Flow Guard. Microsoft Windows Dev Center. https://docs.microsoft.com/en-us/windows/win32/secbp/
control-flow-guard.

[12] Intel MPX Explained. Intel MPX. https://intel-mpx.github.io/.

[13] AddressSanitizer. Clang 11 documentation. https://clang.llvm.org/docs/AddressSanitizer.html.

[14] Intel Software Guard Extensions. Intel. https://software.intel.com/content/www/us/en/develop/topics/software-
guard-extensions.html.

[15] Control-flow Enforcement Technology Specification. Intel. https://software.intel.com/sites/default/files/
managed/4d/2a/control-flow-enforcement-technology-preview.pdf.

[16] Welcome to Native Client. Chrome. https://developer.chrome.com/native-client.

[17] O’Callahan, R. Blink, PNaCl, And Standards. Eyes Above The Waves. May 2013. https://robert.ocallahan.
org/2013/05/blink-pnacl-and-standards.html.

[18] asm.js. http://asmjs.org/.

[19] RAII. cppreference.com. https://en.cppreference.com/w/cpp/language/raii.

[20] libFuzzer – a library for coverage-guided fuzz testing. LLVM. https://llvm.org/docs/LibFuzzer.html.

[21] AFL. https://github.com/google/AFL.

[22] Rust. https://www.rust-lang.org/.

[23] Foreign Function Interface. https://doc.rust-lang.org/1.9.0/book/ffi.html.

[24] A little Rust with your C. The embedded Rust book. https://rust-embedded.github.io/book/interoperability/
rust-with-c.html.

[25] To panic! or Not to panic! The Rust programming language. https://doc.rust-lang.org/book/ch09-03-to-panic-or-
not-to-panic.html.

[26] Function std::panic::catch_unwind. https://doc.rust-lang.org/std/panic/fn.catch_unwind.html.

[27] LLVM Language Reference Manual. LLVM. https://llvm.org/docs/LangRef.html.

[28] Single-Static Assignment Form and PHI. Mapping High Level Constructs to LLVM IR. https://mapping-high-level-
constructs-to-llvm-ir.readthedocs.io/en/latest/control-structures/ssa-phi.html.

[29] Definitions and ODR (One Definition Rule). cppreference.com. https://en.cppreference.com/w/cpp/language/
definition.

[30] Compile Explorer. https://godbolt.org/.

[31] Native Client FAQ. https://developer.chrome.com/native-client/faq.

[32] Native Client Technical Overview. https://developer.chrome.com/native-client/overview.

[33] Jangda, A.; Powers, B.; Berger, E.D.; Guha, A. Not So Fast: Analyzing the Performance of WebAssembly vs.
Native Code. Usenix 2019. July 2019. https://www.usenix.org/system/files/atc19-jangda.pdf.

