

30 September - 2 October, 2020 / vblocalhost.com

OPERATION LAGTIME IT: COLOURFUL PANDA FOOTPRINT

Fumio Ozawa, Shogo Hayashi & Rintaro Koike

NTT Security (Japan) KK

fumio.ozawa@global.ntt syogo.hayashi@global.ntt rintaro.koike@global.ntt

ABSTRACT

Operation LagTime IT by TA428 is an attack campaign targeting governmental organizations of East Asian countries, reported by *Proofpoint* in July 2019. It is still in the wild and active as of 2020. Through detailed research on two samples (document files on Qasem Soleimani and COVID-19) observed in January and February 2020, we have successfully unveiled and determined the whole attack picture, including how TA428 interacts with a target. Previous research on Operation LagTime IT only reported that it used the Royal Road RTF Weaponizer, Poison Ivy and Cotx RAT. However, according to the behaviour that we have observed, TA428 also performs user environment checking, credential stealing, lateral movement and highly sophisticated defence evasion.

In this paper we describe the operational steps that TA428 has taken from initial samples to reach the deepest part of the victim's system. We also reveal our analysis of the malware used by TA428 and the codes that decode encrypted communication. We also discuss how the techniques, tools and malware used in Operation LagTime IT overlap with those of various other APT actors.

INTRODUCTION

TA428

TA428 is an advanced persistent threat (APT) actor that mainly targets East Asia. TA428 is known as a Chinese APT actor, and its most recent attack campaign is called Operation LagTime IT. It's considered that the actor is related to Pirate Panda [1], Tropic Trooper and Key Boy.

Operation LagTime IT

Operation LagTime IT is an attack campaign operated by TA428 around March 2019. *Proofpoint* has reported [2] that the group used Poison Ivy and Cotx RAT to target government agencies in East Asia. It has been reported that an RTF file generated by a tool called 'Royal Road RTF Weaponizer' [3], which is related to Tick and Tonto, is used as a lure document for the attacks.

Our motivation

Similar to Tick and Tonto, TA428 is attacking East Asia using the 'Royal Road RTF Weaponizer'. However, detailed attack analysis of TA428 has not been shared to date. We wanted to find out the details of TA428's attack strategy in order to help defend against it, in particular what kind of breaches the group uses with Poison Ivy and Cotx RAT. Therefore, we focused on Operation LagTime IT, which is one of TA428's most active attack campaigns, and we observed and analysed the attack.

Since 2020, we have observed Operation LagTime IT attacks five times. We performed a detailed analysis of the two attacks we observed in January and February. As a result, we have been able to uncover several pieces of malware and compromise tools that have never before been reported, as well as the attacker's specific method of operation.

CASE 1

Overview and attack flow

In early January 2020, we observed a file called 'How Suleimani's death will affect India and Pakistan.doc'. This file is a lure document that is the launch point for Operation LagTime IT. When this file is opened in a vulnerable version of *Microsoft Office Word*, it will exploit the vulnerability and create a file called 'useless.wll' in the *Microsoft Word* startup directory.

The .wll file located in the *Microsoft Office Word* startup directory will automatically be loaded and executed when the user starts *Word*.

The file named 'useless.wll' is Poison Ivy. It is used to download three cab files ('o.cab', 'nbt.cab' and 'in.cab') from the C&C server, and execute the files stored in the cab files. The file 'o.cab' contains 'o.exe', which is a tool used to dump *Outlook* credentials. The file 'nbt.cab' contains 'n.exe', which is an NTB scan tool. The file 'in.cab' contains a file named 'intel.dll', which will be executed from 'rundll32.exe' by the attacker later on.

The file 'intel.dll' creates two files, 'intel.exe' and 'RasTls.dll'. 'Intel.exe' is a legitimate *Intel* executable file that is digitally signed. 'Intel.exe' is used to perform DLL side-loading as the executable will load 'RasTls.dll', located in the same directory. 'RasTls.dll' is a Cotx RAT.

After executing 'o.exe' and 'n.exe' and persisting the Cotx RAT, the operation by the attacker stopped.

Figure 1: Whole picture of attack Case 1.

Item	File path	Description
Lure document	How Suleimani's death will affect India and Pakistan.doc	RTF file that attacker sends
Word document	-	Any Microsoft Office Word file
Poison Ivy	%APPDATA%\Microsoft\Word\STARTUP\useless.wll	Poison Ivy RAT
Credential stealer	%USERPROFILE%\AppData\Local\Comms\o.cab	Dump tool for Outlook credentials
	%USERPROFILE%\AppData\Local\Comms\o.exe	
NBTScan	%APPDATA%\Adobe\nbt.cab	NBT scan tool
	%APPDATA%\Adobe\n.exe	
Dropper	%ALLUSERSPROFILE%\Comms\in.cab	Dropper of Cotx RAT
	%ALLUSERSPROFILE%\Comms\intel.dll	
Legitimate file	%ALLUSERSPROFILE%\Comms\intel.exe	Legitimate executable file of Intel
	%APPDATA%\Intel\Intel(R) Processor Graphics\ IntelGraphicsController.exe	Corporation
Cotx RAT	%ALLUSERSPROFILE%\Comms\RasTls.dll	Cotx RAT is side-loaded by intel.exe

Table 1: Malware and files observed during attack Case 1.

Lure document

'How Suleimani's death will affect India and Pakistan.doc' is an RTF file relating to the death of Commander Soleimani of the Islamic Revolutionary Guard.

H	5 - C	Ŧ		How Sulein	nani's death will a	affect India	a and Paki	istan.doc	[互換モード] - '	Word		Ā	-	C		×
ファイル	ホーム 携	重入 デザイン	レイアウト	参考資料	差し込み文書	校閲	表示	開発	♀ 実行したい	₩作業を入力して	ください		サイ	212	名.#1	有
より付け 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	Calibri (本	$\dot{\mathbf{x}}$ \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x}	Aa - @ - ª⊻	✓ ▲ ▲	∃ • <u>\$</u> ∃ • ^{\$} 577 ≡ ≡ ≡ ≡	- ≌ ‡≣ -	X - <u>A</u> -	2↓ <i>*</i> ∃ •	あア亜 」標準	あア亜 → 行間詰め	あア亜 _{見出し1}	あ了亜 _{見出し 2}	4	₽検 設置	索 ▼ 換 択 ▼	
クリップボー・・	rs.	フォント		G.		段落		Gi		スタ	イル		G	編	集	^
1/3 6-53	1128 安全	How Su	erly conside ds Force, d hran. Lister 1.4 r the respon hich has vitt 55-word stat r the US", t blandly stat vitte using 'a ated tensior	er the poss isregard th instead f isses offere- al interests atement. It that "the ed Indian the extrem 15.4	fect India and F sible fallout of he tub-thumpin or the sound d by South Asia s in the Middle t "noted" in t increase in ten position signific ne terms favou	Pakistane ² Friday's t ng rhetor of silence 's nuclear East, as v five terse sion has a cantly om ured by A	argeted ric from es withir r-armed well as si sentenc alarmed hitted tw umerican	US strik Washing n dispara neighbo trong rel tes " tha the worl o points. n officials	e on Qasse gton and th te countrie urs, India ar ations with it a senior Ir Id", and ca . It did not s and it did	m Suleimar ne ominous es' stateme nd Pakistan. both the U anian leade alled for "r criticise Sul not specif	ii, of Iran's rumblings nts on the e S and Iran, er has been estraint". eimani and y who had				1009	26

Figure 2: 'How Suleimani's death will affect India and Pakistan.doc'.

This RTF file contains malicious code for exploiting CVE-2018-0798 and an object called '8.t'. The inclusion of these objects suggests that it was created using the Royal Road RTF Weaponizer.

```
$ rtfobj "How Suleimani's death will affect India and Pakistan.doc"
rtfobj 0.54 on Python 2.7.15 - http://decalage.info/python/oletools
THIS IS WORK IN PROGRESS - Check updates regularly!
Please report any issue at https://github.com/decalage2/oletools/issues
_____
File: "How Suleimani's death will affect India and Pakistan.doc" - size: 112050 bytes
---+-----+-----
id |index |OLE Object
---+-----
0 |0000A105h |format_id: 2 (Embedded)
           |class name: 'Package'
  |data size: 28360
   Τ
            |OLE Package object:
             |Filename: u'8.t'
             |Source path: u'C:\\Aaa\\tmp\\8.t'
            |Temp path = u'C:\\Users\\ADMINI~1\\AppData\\Local\\Temp\\8.t'
             MD5 = '128d63a9141545fe9cd70ef2f7b68a04'
  1 |00017F25h |format_id: 2 (Embedded)
             |class name: 'Equation.2\x00\x124Vx\x90\x124VxvT2'
   T
             |data size: 6436
   1
            MD5 = 'cedca7a7d475b12161359cd54d054433'
   T
2 |00017F0Bh |Not a well-formed OLE object
         ----+-----
```

Figure 3: Objects included in the RTF file.

When this RTF file is opened with *Microsoft Word*, it will load the malicious code that exploits CVE-2018-0798 and execute the two-byte XOR-encoded shellcode.

0x0000006e	inc	edx	
0x00000070	рор	rdi	
0x00000071	add	edi, 0x1a	
0x00000074	xor	ecx, ecx	
0x00000076	mov	cx, 0x8ba	
 0x0000007a	cmp	word [rdi], 0	
0x0000007e	je	0x85	
0x00000080	xor	word [rdi], 0xc390	
0x00000085	loop	0x7a	
0x00000089	jns	0xad	
0x0000008b	xchg	eax, edx	
0x0000008c	ret		

Figure 4: Decoding shellcode.

The shellcode decodes the 8.t object by the following operations:

	0x00000453	mov	eax, 0x48b53a6c
	0x00000458	xor	edx, edx
	0x0000045a	test	ebx, ebx
	0x0000045c	jle	0x48e
	0x0000045e	mov	esi, ebx
	0x00000460	push	7
	0x00000462	pop	rbx
┌→	0x00000463	mov	ecx, eax
	0x00000465	shr	ecx, 0x1a
	0x00000468	xor	ecx, eax
	0x0000046a	shr	ecx, 3
	0x0000046d	xor	ecx, eax
	0x0000046f	add	eax, eax
	0x00000471	and	ecx, 1
	0x00000474	or	eax, ecx
	0x00000476	jne	0x463
	0x0000047a	mov	ecx, dword [rbp - 0xc]
	0x0000047d	xor	byte [rdx + rcx], al
	0x00000480	cmp	edx, esi
	0x00000483	jl	0x460
	0x00000485	mov	ebx, dword [rbp - 4]
	0x00000488	lea	esi, [rdi + 0x2a5]
	0x0000048e	xor	eax, eax

Figure 5: Decoding the 8.t object.

The result of decoding 8.t is a DLL file that will be written to the *Microsoft Office Word* startup directory with the file name 'useless.wll'.

Poison Ivy

The useless.wll file created in the *Microsoft Office Word* startup directory will automatically be loaded and executed the next time *Microsoft Office Word* is started [4].

This .wll file will first check for the existence of the string 'WORD.EXE' in the result of GetCommandLineA by using the strstr function. If the string exists, it will execute again using rundll32.exe. This time, it will execute a function called 'DllEntry10', rather than 'DllEntryPoint'.

When DllEntry10 is executed, it first decodes some data with 'XOR 0xad'. One of the decoded strings is an RC4 key. The core part of Poison Ivy will be decoded using the RC4 key and additional simple operation.

The decoded data includes Poison Ivy's configuration data, which is shown in Table 2.

C645 BC 72	mov byte ptr ss:	ebp-44 ,72	72:'r'
C645 BD 75	mov byte ptr ss:	ebp-43,75	75:'u'
C645 BE 6E	mov byte ptr ss:	ebp-42,6E	6E:'n'
C645 BF 64	mov byte ptr ss:	ebp-41,64	64: 'd'
C645 C0 6C	mov byte ptr ss:	ebp-40,6C	6C:'1'
C645 C1 6C	mov byte ptr ss:	ebp-3F,6C	6C:'1'
C645 C2 33	mov byte ptr ss:	ebp-3E,33	33: '3'
C645 C3 32	mov byte ptr ss:	ebp-3D,32	32:'2'
C645 C4 2E	mov byte ptr ss:	ebp-3C,2E	2E:'.'
C645 C5 65	mov byte ptr ss:	ebp-38,65	65:'e'
C645 C6 78	mov byte ptr ss:	ebp-3A,78	78:'X'
C645 C7 65	mov byte ptr ss:	ebp-39,65	65:'e'
C645 C8 20	mov byte ptr ss:	ebp-38,20	20:'''
C645 C9 22	mov byte ptr ss:	ebp-37,22	22: '\"'
C645 CA 25	mov byte ptr ss:	ebp-36,25	25:'%'
C645 CB 73	mov byte ptr ss:	ebp-35,73	73:'s'
C645 CC 22	mov byte ptr ss:	ebp-34,22	22: '\"'
C645 CD 2C	mov byte ptr ss:	ebp-33,2C	2C:','
C645 CE 44	mov byte ptr ss:	ebp-32,44	44: 'D'
C645 CF 6C	mov byte ptr ss:	ebp-31,6C	6C: 11
C645 D0 6C	mov byte ptr ss:	ebp-30,6C	6C: 11
C645 D1 45	mov byte ptr ss:	ebp-2F ,45	45:'E'
C645 D2 6E	mov byte ptr ss:	ebp-2E,6E	6E: 'n'
C645 D3 74	mov byte ptr ss:	ebp-2D,74	74:'t'
C645 D4 72	mov byte ptr ss:	ebp-2C,72	72: 'r'
C645 D5 79	mov byte ptr ss:	ebp-28,79	79: 'y'
C645 D6 31	mov byte ptr ss:	ebp-2A,31	31: 1
C645 D7 30	mov byte ptr ss:	ebp-29,30	30:'0'
C645 D8 00	mov byte ptr ss:	ebp-28,0	

Figure 6: Executing the DllEntry10 function.

	0x10001d90	mov eax, dword [var_42bch]
	0x10001d96	add eax, 1
	0x10001d99	mov dword [var_42bch], eax
└┼──▶	0x10001d9f	cmp dword [var_42bch], 0x42ac
	0x10001da9	jge 0x10001df9
	0x10001dab	mov ecx, dword [var_42bch]
	0x10001db1	movzx edx, byte [ecx + 0x10004010]
	0x10001db8	not edx
	0x10001dba	mov eax, dword [var_42bch]
	0x10001dc0	mov byte [eax + 0x10004010], dl
	0x10001dc6	mov ecx, dword [var_42bch]
	0x10001dcc	movzx ecx, byte [ecx + 0x10004010]
	0x10001dd3	mov eax, dword [var_42bch]
	0x10001dd9	xor edx, edx
	0x10001ddb	mov esi, 0x200 ; 512
	0x10001de0	div esi
	0x10001de2	movzx edx, byte [edx + 0x10008320]
	0x10001de9	xor ecx, edx
	0x10001deb	mov eax, dword [var_42bch]
	0x10001df1	mov byte [eax + 0x10004010], cl
	0x10001df7	jmp 0x10001d90

Figure 7: The simple operation.

	95.179.131.29:443
Cac server	95.179.131.29:8080
Campaign ID	hold
Group ID	hold
Mutex	99x7nmpWW
Password	3&U<9f*lZ>!MIQ

Table 2: Poison Ivy's configuration data.

This version of Poison Ivy has similar traffic characteristics to those of a variant called SPIVY [5]. The first byte of traffic is a value from 0x01 to 0x0f. It shows the size of the padding data that immediately follows it. When the padding data ends, double the padding data size follows to indicate the end. After that is the data body.

Padding siz	e	Pa	ddir	ng d	ata	(ra	ando	m)	Pad	din	g er	nd (siz	e*2))	Enc	oded data	
00000000	0b	fØ	45	be	43	6a	89	34	22	9e	4e	55	16	27	a7	1c	E.Cj.4	".NU.'
00000010	66	6a	e4	41	1d	11	cf	7a	7a	7a	ba	db	86	bf	a1	ad	fj.Az	zz
00000020	61	c3	bb	1a	3e	4d	15	68	03	27	ba	d1	68	9c	1d	11	a>M.h	.'h
00000030	57	73	03	7c	22	7a	17	e4	ee	21	a4	e3	7f	e3	74	66	Ws. "z	.!tf
00000040	87	f2	a9	b6	e1	с8	a8	29	a2	a4	6e	сс	ad	6c	43	8c)	nlC.
00000050	19	bc	5e	34	96	7c	61	93	ba	f8	40	8f	99	c2	62	c9	^4.a.	@b.
00000060	bf	5b	ef	ea	7b	с9	8f	46	ec	6c	73	44	56	cd	1c	45	.[{F	.lsDVE
00000070	87	25	38	14	0a	bØ	ab	d2	39	f7	e3	4c	9a	1d	89	3a	.%8	9L:
00000080	a5	78	42	a1	75	6c	cf	99	26	Зc	14	с3	7e	e8	16	87	.xB.ul	&<~
00000090	11	e2	12	cb	e8	b2	fc	04	95	65	46	b4	90	9b	07	f2		.eF
000000A0	2b	a8	2a	78	cb	07	3e	10	ad	9d	58	cd	42	74	d6	9f	+.*x>.	X.Bt
000000B0	8b	30	e5	fc	7f	a8	a0	f4	d9	89	04	a3	c9	03	0d	13	.0	
00000000	b8	1d	74	2e	82	d2	7d	86	f7	66	c2	e7	54	79	81	b4	t}.	.fTy
000000D0	45	d8	80	b3	07	84	28	df	99	1c	e3	19	2c	aa	f7	04	E(.	,
00000E0	d3	f5	3d	ca	e2	6c	e2	ee	0b	f5	aa	1f	33	6b	5d	cb	=1	3k].
000000F0	f9	79	e0	50	0d	b9	b8	63	3c	Øb	c8	07	28	ec	f7	a4	.y.Pc	<(
00000100	ce	5f	2a	d2	c6	7b	01	aa	1c	bd	30	a7	22				·_*{	0."
	_																	

Figure 8: Traffic data structure.

The data is Camellia-encrypted using ECB mode. The encryption key is contained in the configuration data. The structure of the subsequent data is the same as in the normal Poison Ivy [6].

Cotx RAT

The Cotx RAT is the original RAT used by the TA428 group. The *Proofpoint* report [2] named it Cotx RAT because it saved the configuration data in the '.cotx' section. However, in the Cotx RAT that we analysed, the configuration data was included in the '.pdata' section.

🛩 CFF Explorer VIII - [RasTIs.dll]						-		_
File Settings ?								
🄌 📕 🔊	RasTIs.dll							×
VP 🛸 10	Name	Virtual Size	Virtual Address	Raw Size	Raw Address	Reloc Address	Linenumbers	^
E S File: RasTis.dll								
- Dos Header	Byte[8]	Dword	Dword	Dword	Dword	Dword	Dword	
- I File Header	.text	00015163	00001000	00015200	00000400	00000000	00000000	
Optional Header Data Directories [x]	rdata	00009BCA	00017000	00009C00	00015600	0000000	0000000	
Section Headers [x]	data	0006DE2C	00021000	0006D000	0001E200	0000000	0000000	
Export Directory	odata	00000400	00005000	00000400	0009(200	00000000	0000000	
Import Directory Besource Directory	.puata	00000400	0000F000	0000400	00000200	0000000	000000	
- Cale Relocation Directory	.rsrc	00003D0	00090000	00000400	0008C600	0000000	0000000	~
Debug Directory	<						>	
- Address Converter								^
Dependency Walker Hex Editor	🛍 📫		P 🖬					
- Mildentifier	Offset	0 1 2 3	4 5 6 7	8 9 A	BCDE	F Ascii		
— 🐁 Import Adder	00000000	4E 6F 66 4D	55 55 4E 69	57 32 7A 3	2 4F 6D 76 5	51 NofMUUN	IiW2z2OmvQ	
— 🐁 Quick Disassembler	00000010	5A 50 34 77	31 46 2F 61 45 49 54 31	6E 74 4D 6	8 50 44 62 3 5 4B 54 47 3	32 ZP4w1F/ 72 URH#FI7	antMhPDb2	
- Nebuilder	00000030	56 69 35 52	37 5A 6A 76	35 76 49 6	5 53 6F 66 5	50 Vi5R7Zj	v5vIeSofP	
Resource Editor	00000040	78 50 6C 2F	2F 79 66 4E 78 41 3D 3D	31 4D 6B 7	8 47 78 44 6 0 00 00 00 0	67 xP1//yf	N1MkxGxDg	
	00000060	00 00 00 00	00 00 00 00	00 00 00 0	0 00 00 00 0	00		
	00000070	00 00 00 00	00 00 00 00	00 00 00 0	0 00 00 00 0	00		
	<						>	×.

Figure 9: Configuration data in the '.pdata' section.

The configuration data is encrypted with AES-192 in CBC mode. The encryption key and initialization vector 'IV' are identical to those in the *Proofpoint* report.

調 ダンプ	1		<u>ال</u>	しょ	2		.	ダンプ	93			ダン	94			タン	プ5	👹 Watch 1
アドレス	нех	(ASC	II
00A24B70	98	15	11	37	AB	12	78	09	69	B2	C 3	61	20	72	01	87		7«.x.iªĂa r
00A24B80	09	A8	3A	33	52	46	6A	8B	20	42	12	32	24	31	51	17	. 13	BRFj. B.2\$1Q.
00A24B90	03	18	14	0A	3C	CD	A5	3F	18	B2	A0	00	28	B2	A0	00		<1¥?.* (* .
00A24BA0	<u>3C</u>	<u>B2</u>	<u>A0</u>	00	50	B2	<u>A0</u>	00	60	B2	<u>A0</u>	00	74	B2	<u>A0</u>	00	<	Pt
00A24BB0	90	B2	AO	00	00	00	00	00	A4	B2	AO	00	BO	B2	AO	00	2	Щ ² °2

			<																		
edx=04D9F6C0 dword ptr [ebp-6B4]=[052DF3C4 "mtanews.vzglagtime.net 1.187.1.187 1011_15 P@SSav																					
0097C64A																					
💷 ダンプ	1	Ų	• Ş	ンプ	2		,	ダンプ	93			ダン	9 4		ι.	ダン	プ5	6	Watch	n 1	[x =] Lo
アドレス	Hex	(ASCII	[
052DF3C4	6D	74	61	6E	65	77	73	2E	76	7A	67	6C	61	67	74	69	mtane	ws.v	/zglag	ti	
052DF3D4	6D	65	2E	6 E	65	74	7C	7C	7C	31	2E	31	38	37	2E	31	me.ne	et	1.187	.1	
052DF3E4	2E	31	38	37	7C	31	30	31	31	5F	31	35	7C	50	40	53	.187	1011	L_15 P	@S	
052DF3F4	53	61	77	31	7C	31	39	32	2E	31	36	38	2E	32	34	38	Saw1	192.	168.2	48	
052DF404	2E	31	30	3A	38	30	38	30	00	00	00	00	00	00	00	00	.10:8	3080.		· ·	
052DF414	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				· ·	
052DF424	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					
052DF434	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00				· ·	
05206444	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00					

Figure 11: Decoding results of the configuration data.

This RAT functionality was also unchanged from the Proofpoint [2] report.

Credential stealer

The 'o.exe' file that was downloaded and executed by Poison Ivy is a commercial tool [7] called 'Outlook Password Dump v3.0'. When the tool is executed, it is possible to steal credentials stored in *Microsoft Office Outlook*. In the victim's environment, the attacker could not get anything because the credentials were not stored in *Outlook*.

\$ o.exe				
*****	06**06**006**06**06**0	****		
Outlook Password Dump	<pre>/3.0 by SecurityXploded</pre>			
http://securityxploded	.com/outlook-password-du	ump.php		
*****	000000000000000000000000000000000000000	****		
Email Address	Username	Password	Account Type	Email Server

Figure 12: An execution result of o.exe.

Environment scanner

The 'n.exe' file that was downloaded and executed by Poison Ivy is a public NBTScan tool [8]. When the tool is executed, it is possible to scan for hosts on the target network. The attacker was scanning neighbouring networks and looking for existing hosts.

```
$ n.exe
nbtscan 1.0.35 - 2008-04-08 - http://www.unixwiz.net/tools/
usage: n.exe [options] target [targets...]
   Targets are lists of IP addresses, DNS names, or address
   ranges. Ranges can be in /nbits notation ("192.168.12.0/24")
   or with a range in the last octet ("192.168.12.64-97")
   -V
             show Version information
   -f
             show Full NBT resource record responses (recommended)
   -H
             generate HTTP headers
            turn on more Verbose debugging
   -v
            No looking up inverse names of IP addresses responding
   -n
            bind to UDP Port <n> (default=0)
   -p <n>
   —m
            include MAC address in response (implied by '-f')
   -T <n>
            Timeout the no-responses in <n> seconds (default=2 secs)
   -w <n>
            Wait <n> msecs after each write (default=10 ms)
            Try each address <n> tries (default=1)
   -t <n>
   -1
             Use Winsock 1 only
   -P
             generate results in perl hashref format
```

Figure 13: Execution of n.exe.

CASE 2

Overview and attack flow

In the middle of February 2020, we observed a file called 'English_2020.02.17_13.00_MOH_daily update.doc'. This file looks like a document related to COVID-19. However, it is actually a lure document that is the starting point for the attack of Operation LagTime IT. As in Case 1, a .wll file is created ('woldfunc.wll') and copied to the *Microsoft Office Word* startup directory.

H			=				Englisł	1_202	20.02.17_13.0	0_MOH_dail	y update.doc [[互抜	奥モード] - Word	I		<u>م</u>	I –			×
ファイル	巿	й-Д	挿入	デザ	いい	アウト	参考資料		差し込み文書	校閲	表示 開発		♀ 実行したい				サ・	ん	۶ţ	共有
貼り付け	%] ĭ	Calibri B I	(本文(↓ ↓	 ▼ 11 ab∈ X₂ 2 	x ² (A · · ·	Aa -			- <u>}</u> - * *;- * = = = =	· ⊡ == ≌ ↓≣ •	☆ - <u>2</u> ↓ . ♪ - ::: -	€ ¹ *	あア亜 」標準	あア亜 ↓行間詰め	あア亜 ^{見出し1}	あ了 見出し	₽ 2 ₹	P ta abc a ⊳ i	検索 ▼ 置換 醒択▼	
クリップボ・・・	5			5	フォント		r	5		段落		5		スタ	YIL		5	a #	贏集	~
			C(Da M Da	DVID aily u inistry ate:	-19 pdate y of Hea 17 Febru DBAL SITU	(FOI alth N Jary ATION	R INTEI /longoli 2020, 0: I(Table 1)	RN/ a≁ 1.0(AL USE C) pm (Ulaa	DNLY)- anbaatar	time)#									
				4				w	HO* ↔	MOH, PRC**			MoH, Mongolia 🤄			e.				
		4		tota	total¢ 1	cases in the last 24 hours৶	totale	cases in the last 24 hours	ø	l otal¢	new cases in the last 24 hoursಳಿ		÷.							
				Nui	mber of co	onfirm cas	ed 518! ∵es⇔	57₽	1278	70586†∉	2002		-43		-43	¢				
					Number a	f deat	<i>hs</i> ₽ 166	6₽	142*	1770₽	104†te		-47		-+2	ę				
				Nui	mber of si	uspect cas	ed NA ∙es≠	ŧ₽	NA₽	8228₽	-1918₽		137 ₽		1₽	ą				
					Number o	of seve	re NA	\ ₽	NA₽	11272	219₽		-47		-+7	¢,				
		001 -	÷ #	· · · · · · · · · · · · · · · · · · ·										BE			1.1		1 11	0.01/

Figure 14: 'English_2020.02.17_13.00_MOH_daily update.doc'.

Also as in Case 1, 'woldfunc.wll' is Poison Ivy, and it downloads three cab files from the C&C server and runs Cotx RAT in exactly the same way.

In Case 1, 'o.exe' and 'n.exe' were only used to investigate the environment and steal information. However, in Case 2, there was more of a breach.

First, 's.cab' and 'w.cab' were downloaded, unpacked and executed by Poison Ivy. 'S.cab' contains an executable file called 's.exe'. This is a checker to investigate whether it can be compromised by exploiting MS17-010 against the host passed as an argument. An attacker who finds a laterally deployable host with 's.exe' then uses the 'w.exe' contained in 'w.cab' to do the actual compromise. 'W.exe' is a tool that actually exploits MS17-010. The attacker used it to inject a DLL file into the compromised host, in the lsass.exe process, to execute it.

The injected DLL file is the second Poison Ivy. However, it accesses a different C&C server from the one accessed by the Poison Ivy that was initially executed. Using the second Poison Ivy, the attacker continued to compromise. We observed lateral movement on two hosts and investigated further breaches on each host.

*Red line shows a attack flow that is different from Case1.

Figure 15: Whole picture of attack Case 2.

Table 3 shows the malware and files observed during attack Case 2.

On one of the two hosts (Internal Host-A), three cab files ('nbt.cab', 'sh.cab', 'ss.cab') were downloaded, unpacked and executed. Of these, 'sh.cab' contains a file called 'show.exe'. This is a tool that steals username, domain and password from the 'lsass.exe' process. Also, 'ss.cab' contains a file called 'dwm.exe'. This is the RAT we call Tmanger.

Item	File path	Description				
Lure document	English_2020.02.17_13.00_MOH_daily update.doc	RTF file that attacker sends				
Word document	-	Any Microsoft Office Word file				
Poison Ivy-A	%APPDATA%\Microsoft\Word\STARTUP\ woldfunc.wll	Poison Ivy RAT				
Credential stanlar A	%ALLUSERSPROFILE%\Comms\o.cab	Dumm tool for Outlook and antiols				
Credential stealer-A	%ALLUSERSPROFILE%\Comms\o.exe	Dump tool for Outlook credentials				
NPT coop	%ALLUSERSPROFILE%\Comms\nbt.cab	NPT coop tool				
INBT scan	%ALLUSERSPROFILE%\Comms\n.exe	NBT scan tool				
Durante	%ALLUSERSPROFILE%\Comms\in.cab					
Dropper	%ALLUSERSPROFILE%\Comms\intel.dll					
	%ALLUSERSPROFILE%\Comms\intel.exe	Legitimate executable file of Intel Corporation				
Legitimate File-A	%APPDATA%\Intel\Intel(R) Processor Graphics\ IntelGraphicsController.exe					
Cotx RAT	%ALLUSERSPROFILE%\Comms\RasTls.dll	Cotx RAT is side-loaded by intel.exe				
SeerTeel	%ALLUSERSPROFILE%\Comms\s.cab	Seem to al fam MS17 010				
Scan 1001	%ALLUSERSPROFILE%\Comms\s.exe	Scan tool for MIS17-010				
EvalaitTaal	%ALLUSERSPROFILE%\Comms\w.cab	Eveloit tool for MS17 010				
Exploit 1001	%ALLUSERSPROFILE%\Comms\w.exe	Exploit tool for MS17-010				
Deisen Ivy D	%ALLUSERSPROFILE%\Comms\x86.dll	Deison WV is injected into losse ave				
Poison Ivy-B	%ALLUSERSPROFILE%\Comms\x64.dll	Poison IV I is injected into isass.exe				
Legitimate File-B	%SYSTEMROOT%\System32\lsass.exe	Legitimate executable file of Microsoft Corporation				

Table 3: Malwares and files observed during attack Case 2.

Item	File path	Description		
Creadantial staalan D	%ALLUSERSPROFILE%\GroupPolicy\sh.cab	Dama ta al francisca ano		
Credential stealer-B	%ALLUSERSPROFILE%\GroupPolicy\show.exe	Dump tool from isass.exe		
NDTC	%ALLUSERSPROFILE%\GroupPolicy\nbt.cab	NDT to -1		
NBIScan	%ALLUSERSPROFILE%\GroupPolicy\n.cab	NB1 scan tool		
T	%ALLUSERSPROFILE%\Microsoft\DRM\ss.cab	Turner DAT		
1 manger	%ALLUSERSPROFILE%\Microsoft\DRM\dwm.exe	I manger RAI		

Table 4: Malware and files observed during the attack Internal Host-A.

On the other host (Internal Host-B), the files 'In.cab' and 'WindowsResKits.dll' were downloaded. 'In.cab' contains a file called 'Instsrv.exe'. This impersonates the legitimate tool provided as a resource kit and registers 'WindowsResKits.dll' as a service. 'WindowsResKits.dll' is a new type of malware that we call nccTrojan.

The attacker attempted further breaches using Active Directory administrator passwords stolen by 'show.exe'. However, the passwords stolen by the attackers were old. As a result, the breach failed, and the activity ended.

In Case 2, the flow until the attacker used Cotx RAT was the same as in Case 1. Therefore, we will explain the lateral movement in detail below, except for the case shown in Case 1.

Figure 17: Attack flow in Internal Host-B.

Item	File path	Description		
Installer	%ALLUSERSPROFILE%\Microsoft\Crypto\In.cab	Register nccTrojan as a service		
Instanci	%ALLUSERSPROFILE%\Microsoft\Crypto\Instsr.exe	and execute		
nccTrojan	%ALLUSERSPROFILE%\Microsoft\Crypto\ WindowsResKits.dll	nccTrojan RAT		

Table 5: Malware and files observed during the attack Internal Host-B.

Lateral movement

The attacker used two tools for lateral movement. The first is s.exe. This is a tool that checks if it is possible to exploit the MS17-010 vulnerability on the specified host. It is a PE file converted from the public Python script [9] by PyInstaller.

Figure 18: Execution of s.exe.

After the attacker found a vulnerable host using s.exe, the second tool, 'w.exe', was used. This is a tool which enables the MS17-010 vulnerability to be exploited. It is a PE file which seems to have been created based on the public Python script [10].

The w.exe tool sends x86.dll or x64.dll in the same directory to the target host depending on the environment and injects it into the lsass.exe process.

```
$ w.exe
[1]-----check backdoor and system version-----
get_smb_signature 59437391
**** OS is Win 7 x86
**** backdoor is already installed!
[2]----Inject dll
get_smb_signature 59437391
key 23f5a57b
dll_hex 200704
len_part: 204144
0 ---> 0x52
1 ---> 0x52
2 ---> 0x52
-- Snip --
49 ---> 0x52
50 ---> 0x52
**** dll is now injected!
```

Figure 19: Execution of w.exe.

Poison Ivy (second)

The behaviour of x86.dll and x64.dll is the same. Both are internally named 'blu.dll'. The path of PDB was left in x64.dll as follows:

👚 Plea	se confirm X
?	The input file was linked with debug information and the symbol filename is: 'C:¥Users¥VS¥Desktop¥VS2015 done¥E blue¥blu 64¥x64¥Release¥blu.pdb' Do you want to look for this file at the specified path and the Microsoft Symbol Server? Don't display this message again
	Yes No

Figure 20: PDB path of x64.dll.

When the DLL file is injected into lsass.exe, the 'Register' function is executed. When executed, it creates three files (PotPlayerMini.exe, PotPlayer.dll and PAME13.tmp) under C:\Windows\Temp and executes PotPlayerMini.exe.

Figure 21: Creating PotPlayerMini.exe.

PotPlayerMini.exe is a legitimate binary created by *Daum* and has a digital signature. PotPlayer.dll is loaded in the same directory, causing DLL side-loading.

PotPlayer.dll is the body of Poison Ivy (SPIVY). First, PAME13.tmp is decoded with RC4 to get configuration data. After that, it communicates with the C&C server just like the first Poison Ivy.

	•	
push push	0x200 0x1000b284	512
push call mov	0x10008064 fcn.10001520 ecx, 0x10a7	decode_rc4_key
xor lea mov rep stosw stosb mov or xor lea repne not dec	<pre>eax, eax edi, [var_864fh] byte [var_8650h], 0 stosd dword es:[edi], eax word es:[edi], ax byte es:[edi], al edi, 0x1000b284 ecx, 0xffffffff eax, eax edx, [var_8650h] scasb al, byte es:[edi] ecx ecx</pre>	-1
push	ecx	int32_t arg_ch
push	0x1000b284	int32_t arg_8h
push	edx	int32_t arg_4h
call	fcn.10001550	rc4_ksa
lea	eax, [var_43b0h]	
push	0x42a0	int32_t arg_ch
lea	ecx, [var_8650h]	
push	eax	int32_t arg_8h
push	ecx	int32_t arg_4h
call	fcn.10001600	rc4_prga
add	esp, 0x24	

Figure 22: Decoding PAME13.tmp.

The configuration data of this Poison Ivy is shown in Table 6.

C & C aarraa	45.76.211.18:443					
Cac server	45.76.211.18:8080					
Campaign ID	TOEI					
Group ID	TOEI					
Mutex	G9u3cUoJs					
Password	kos@On					

Table 6: Poison Ivy's configuration data.

This Poison Ivy was executed on two hosts. On the first host, the attacker downloaded and executed a credential stealer and a RAT called 'Tmanger'. On the other host, the attacker downloaded and executed 'nccTrojan'.

Credential stealer (second)

The 'sh.cab' file contains a file named 'show.exe', which is a tool enabling the stealing of *Windows* credentials. Show.exe steals username, domain and password from the lsass.exe process. The attacker executed show.exe and retrieved the credentials, however the penetration to another host didn't succeed because the credentials in our environment were old.

\$ show.exe
U: Administrator
DO: [Reducted]
ps: [Reducted]
U: ANONYMOUS LOGON DO: NT AUTHORITY Specific LUID NOT found
U: LOCAL SERVICE DO: NT AUTHORITY ps:

Figure 23: Execution of show.exe.

Tmanger

The PDB path was left in dwm.exe, which was included in 'ss.cab'. We call it 'Tmanger' because of the string contained in this pathname.

Please confirm										
?	The input file was linked with debug information and the symbol filename is: "C:¥Users¥Waston¥Desktop¥20190403_Tmanger¥20191118 TM_NEW 4.5¥Release¥ttt.pdb" Do you want to look for this file at the specified path and the Microsoft Symbol Server?									
	Don't display this message again									
	Yes No									

Figure 24: PDB path of dwm.exe.

When 'dwm.exe' is executed, it creates 'test.dll' under the Temp folder of the user account. The data in it is in the resource section of the 'dwm.exe' file.

🕨 file-header (time-stamp)	^ type (8)	name	file-offset (26)	signature	non-standard	size (28726 ^
> optional-header (GUI)	D	129	0x00032060	executable	×	194048
directories (6)	icon	1	0x0001B5C0	icon	-	4442
> sections (99.73%)	icon	2	0x0001C720	icon	-	3752
libraries (count)	icon	3	0x0001D5C8	icon	-	2216
	icon	4	0x0001DE70	icon	-	1384
- exports (n/a)	icon	5	0x0001E3D8	icon	-	2315
	icon	6	0x0001ECE8	icon	-	16936
abc strings (38/3290)	icon	7	0x00022F10	icon	-	9640
debug (time-stamp)	icon	8	0x000254B8	icon	-	4264
manifest (aslnvoker)	icon	9	0x00026560	icon	-	1128
	icon	10	0x00026A50	icon	-	4442
certificate (n/a)	icon	11	0x00027BB0	icon	-	3752
	icon	12 N	0x00028A58	icon	-	2216
< >	i i					····· > `

Figure 25: Test.dll embedded in the resource section of dwm.exe.

It also copies itself under the Temp folder with the filename 'master.exe'. And then it persists to execute master.exe with the key 'HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run\Master'.

It then uses rundll32.exe to execute a function called 'Entery' in 'test.dll'. This allocates an area in memory, writes the code and executes it. We believe this is the body of the RAT. After collecting information from the PC, it attempts to communicate with the C&C server on ports 80, 443 and 5222, in that order.

An example of communication with the C&C server is shown below. As a result of analysis, it was found that the first four bytes are the data size and the rest are encoded data.

Data Size							Encoded Data											
00000000	15	00	00	00	1b	f5	42	5a	9e	55	92	03	7a	0e	b8	b6	BZ .U	.z
00000010	f8	8c	36	19	12	9e	54	62	56								6Tb V	

Figure 26: Traffic data.

The data part is encrypted with RC4 and the key is hex encoded as follows.

アドレス	Hex	ASCII
0093C970	00 OC 7C 17 A7 1C D2 07 DA 9E EE C5 8B 0B D7 86	
0093C980	AB 7E 5E 1C 55 C5 6E 2E 75 10 AO FC C2 C8 7A 99	≪~^.UÅn.u. üÂÈz.
0093C990	DB 6C 5C B5 2A C6 32 EE 03 C5 4C A4 4D 0A 20 24	01∖µ*Æ2î.ÅL¤M. \$
0093C9A0	92 CD D9 CB 8C 89 81 80 A5 90 D1 AF 02 B6 5F 15	.1ÙÈ¥.Ñ⁻.¶

Figure 27: RC4 encryption key.

The result of decoding the data part is shown in Figure 28.

	E	ncod	ed P	ID	Com	man	d										
00000000	33	35	34	38	01	80	be	39	00	73	79	73	74	65	6d	69	35489.systemi
00000010	6e	66	6f	0d	0a												nfo
00000015																	

Figure 28: Decoding results of traffic data.

The first four bytes are converted from the PID value as follows:

((CurrentProcessID % 9) × 1000) + ((CurrentProcessID % 1000) + 1000)

Also, we found that the fifth byte is a command to the RAT.

As a result of our analysis, we consider that the functions of this RAT are as follows:

- Command execution by PowerShell
- Sending file information on a PC
- Sending the contents of a file on a PC
- Deleting files on a PC
- · Command execution by the CreateProcess function
- Sending screen capture images
- Keylogger.

No further infringement occurred on this host.

nccTrojan

Using the second Poison Ivy, the attacker placed the installer 'Instsrv.exe' and the RAT 'WindowsResKits.dll' on 'C:\ProgramData\Microsoft\Crypto\'. When Instsrv.exe is executed, it registers a fake service as Windows Resource Kits, as shown in Table 7, copies WindowsResKits.dll to 'C:\Windows\SysWOW64\' or 'C:\Windows\System32\', and starts the service. When the service starts, the svchost.exe process loads WindowsResKits.dll.

Name	Image path
Microsoft Windows Resource Kits	C:\Windows\System32\svchost.exe -k WindowsResKits

Table 7: Registered fake service.

When we analysed WindowsResKits.dll, we found the PDB file path and the compilation date and time as shown in Table 8.

Item	Value
PDB file path	C:\Users\abc\Desktop\cTrojan\2.1\HK\Release\Client.pdb
Compilation timestamp	2019-12-27 01:07:25

Table 8: The meta information of WindowsResKits.dll.

WindowsResKits.dll decrypts config information and communication contents using the method shown in Tables 9 and 10. We confirmed that the character string 'ncc' exists in the decrypted data, and that the character string is necessary to start the process for commands received from the C&C server. Figure 29 shows a function being called to check if the received data is 'ncc'. The first argument is the decrypted character string, the second argument is the received data, and the third argument is the size of the string to compare. For this reason, we call this RAT 'nccTrojan'.

Method	AES (CFB mode)
Key (hex-encoded)	12AB56FF56CDCCED99EE3CBA02270567908CAF772F6BAC7C6C2BF1DDEEC9D6BB (256 bits)
IV (hex-encoded)	02242123421315713AB6A8A0C8DC5AF3 (128 bits)

Table 9: Encryption for config information.

Method	AES (CFB mode)
Key (hex-encoded)	981511371412780969AFC3AB2072018709A83A3332466A8B56FF3FAB8E6C3DAA (256 bits)
IV (hex-encoded)	2042123224315117031B1A0A3CCDA53F (128 bits)

	6F1F9978	× 75 64	000 10	jne win.6F1	F99DE	41 40	Hide FPU				
	6F1F997A	836E 94000 8096 80000	000 10	lea edy dwo	rd otr ds [esit9	4],10					
	6F1F9987	887A 10	000	mov edi, dwo	rd ptr ds:[e	dx+101		EAX	00000003		
	6F1F998A	× 72 02		ib win. 6E1E	998F			EBX	00000003		
	6F1F998C	8B12		mov edx.dwo	rd ptr ds:[e	dx1		ECX	0014F880	"ncc"	
L	6F1F998E	83BD 5CFEF	FFF 10	cmp dword p	tr ss: ebp-1	A4 .10		EDX	00234084	"ncc"	
•	6F1F9995	8D8D 48FEF	FFF	lea ecx.dwo	rd ptr ss: e	bp-188		EBP	0014FA38		
•	6F1F999B	889D 58FEF	FFF	mov ebx, dwo	rd ptr ss: e	bp-1A8		ESP	0014F848		
•	6F1F99A1	8BC7		mov eax,edi				ESI	00234004		
•	6F1F99A3	0F438D 48F	EFFFF	cmovae ecx,	dword ptr ss	:[ebp-1	B8	EDI	00000003		
٠	6F1F99AA	3BDF		cmp_ebx,edi							
•	6F1F99AC	0F42C3		cmovb eax,e	bx			EIP	6F1F99B0	win.6F1F99B0	
	6F1F99AF	50	-	push eax							
	6F1F99B0	E8 DBB6FEF	F	call win.6F	1E5090			EFLAGS 00000246			
•	6F1F99B5	83C4 04		add esp,4				ZF 1 PF 1 AF 0			
	6F1F99B8	85C0		test eax,ea	X			OF 0	SF 0 DF 0		
	6F1F99BA	× 75 12		jne win.6F1	FAACE			CF 0	TF 0 IF 1		
	6F1F998C	360F		cmp ebx,eui	FOOSE						
	6F1F996E	× /3 05		Jac WITH. OF L	F 3 3 C 5			LastEr	ror 000000	DO (ERROR SUCCESS)	
	651599072			imp win CE1	EDOCC						
L	0-1-3503	· EB 0/		Jub will ber	FSSCC		*	fastcall		▼ 5 ≜ □ Unlock	
111 m	<						>	11.00%	00145000		
win.6F1E509	90							2: edx 00234084 "ncc"			
								3: [esp] 0000003			
								4: Lesi	+41 F5C6519	ic .	
.text:6F1F9	99BO win.d	11:\$199B0 #18DE	0					4. [esp+4] escosise			
💷 859.1		o 🚛 859 o		💷 859 c	🙈 📥		0014F848	000000	03		
	8-8 X J J	2 6 7 7 7 8	8 - 8 X J Y 4	8 x y y y y y	1 TURY 1	1,01 0	0014F840	E5C651	9C		
アドレス 日の	ex				ASCII	A 9	0014F850	0014FA	40		
0014F880 6	E 63 63 00	18 00 00 00 00	00 00 00	30 B9 21 00	ncc	.0'	0014F854	000000	00		
0014F890 0	3 00 00 00	OF 00 00 00 0/	00 00 00	C4 01 09 00		Ä. 0	JU14F858	00233F	-8		
0014F8A0 00	0 00 00 00	20 00 00 00 44	CF 21 00	FF FF OF 00	DÏ!.	ÿÿ.	0146850	000000	A9 recurn c	o nudii.//EIE4A9 ir	
0014F8B0 3	<u>8 09 09 00</u>	28 CF 21 00 00	00 09 00	00 00 00 00	8(Ï!		0145864	002100	00		
0014F8C0 E	F8 14 00	A8 DB E1 77 09	00 00 00	00 00 00 00	üø Ûáw	· · · ·]]	014F868	0000AE	8		
0014F8D0 E	D F9 14 00	09 00 00 00 09	00 00 00	00 00 00 00	ðùúð	· · · · 0	0014E860	6E255E	40 win. 6E25	5E40	
0014F8E0 18	B 00 00 00	00 00 00 00 02	00 00 00	00 00 00 00		···· 🖌 🖌	0014F870	000000	1F		

Table 10: Encryption for communication contents.

Figure 29: Comparison of character string 'ncc' and received data.

The nccTrojan connected to 45[.]77.129.213 on port 443/TCP and communicated with the C&C server. As shown in Figure 30, the TCP payload consisted of an eight-byte SIZE field and a following DATA field. It is a feature that the SIZE field was described as a decimal character string and the invalid digit was 'x'.

	SIZE Field E									Encrypted DATA Field						
	+0 +1	+2	+3	+4	+5	+6	+7	+8	49	+A	+B	+C	+D	+E	+F	0123456789ABCDEF
000000	78 78	78	78	78	78	34	38-	53	EA	92	51	39	C5	1B	D4	xxxxxx48SQ9
000010	93 E4	E3	41	B3	6E	E7	38-	DC	6B	8F	50	BB	72	0E	08	A.n.8.k.P.r
000020	BB 2A	93	F1	83	F6	D6	CC-	54	B0	AC	CA	6E	EA	F8	E1	.*Tn
000030	2F E5	92	57	74	B7	89	44-									/WtD

Figure 30: An example of received TCP payload.

We confirmed that the same following functions are implemented in the nccTrojan as the RAT.

- Remote Shell
- Send Disk Information
- Send File List
- Send Process List

- Download File (Read File)
- Upload File
- Operate File (Copy, Move, Delete)
- Kill Process.

CORRELATION

TA428 has been reported to actively use the Royal Road RTF Weaponizer in Operation LagTime IT [2, 3]. The RTF file generated by Royal Road RTF Weaponizer has several characteristics. It can be classified according to the RTF object, encoding algorithm, etc. TA428, Tick and Tonto, are said to belong to Group-B [3]. Attack groups belonging to Group-B mainly target East Asia, especially Russia, Mongolia, South Korea and Japan – countries which have much overlap with the target countries of TA428.

The Poison Ivy used by TA428 has a different traffic structure from the normal Poison Ivy. This is a variant called SPIVY. One example of the use of SPIVY was in Hong Kong in March 2016 [5]. In this attack, similar to the TA428 attack this time, the malware was executed by DLL side-loading using a legitimate *Symantec* binary and RasTls.dll.

This time we have found that TA428 uses PotPlayerMini for DLL side-loading. This technique is extremely rare. Until now, only a few cases of DLL side-loading using PotPlayerMini have been reported [11, 12] – these are said to be the attacks associated with DragonOK (and Danti). A case in Hong Kong, reported by *Palo Alto Networks* [11], uses PotPlayerMini to execute Poison Ivy, similar to this TA428 attack. In addition, the TA428 attack that is believed to have targeted Kazakhstan around April 2019 is said to have used malware related to Danti [13]. DragonOK targets East Asian countries such as Japan and Taiwan and is consistent with the target area of TA428.

CONCLUSION

Operation LagTime IT by TA428 has been observed since at least March 2019 and has not changed TTPs for more than a year. It mainly targets government agencies in East Asia and uses RTF files generated by the Royal Road RTF Weaponizer, Poison Ivy and Cotx RAT. It also uses tools that exploit MS17-010 for lateral movement, NBTScan for environmental investigations, and tools to steal credentials. It also uses previously unknown advanced RATs such as Tmanger and nccTrojan.

TA428 is included in Group-B alongside Tick and Tonto. It may also be associated with previous SPIVY-based attacks against Hong Kong by DragonOK and Danti.

It is expected that attacks by TA428 will continue to be aggressive. To protect your system from attacks by TA428, we recommend that you use the information presented in this paper for detection and defence.

REFERENCES

- [1] Malpedia. Pirate Panda. https://malpedia.caad.fkie.fraunhofer.de/actor/pirate_panda.
- [2] Proofpoint. Chinese APT "Operation LagTime IT" Targets Government Information Technology Agencies in Eastern Asia. https://www.proofpoint.com/us/threat-insight/post/chinese-apt-operation-lagtime-it-targets-government-information-technology.
- [3] nao_sec. An Overhead View of the Royal Road. https://nao-sec.org/2020/01/an-overhead-view-of-the-royal-road. html.
- [4] MITRE ATT&CK. Office Application Startup. https://attack.mitre.org/techniques/T1137/.
- [5] Palo Alto Networks. New Poison Ivy RAT Variant Targets Hong Kong Pro-Democracy Activists. https://unit42. paloaltonetworks.com/unit42-new-poison-ivy-rat-variant-targets-hong-kong-pro-democracy-activists/.
- [6] Conix Cybersécurité. Poison Ivy RAT. https://www.conix.fr/wp-content/uploads/2013/10/Poison-Ivy-RAT-confcomms.pdf.
- [7] Security Xploded. Outlook Password Dump. https://securityxploded.com/outlook-password-dump.php.
- [8] Steve Friedl's Unixwiz.net Tools. nbtscan. http://www.unixwiz.net/tools/nbtscan.html.
- [9] GitHub claudioviviani. ms17-010-m4ss-sc4nn3r. https://github.com/claudioviviani/ms17-010-m4ss-sc4nn3r/blob/ master/ms17-010-m4ss-sc4nn3r.py.
- [10] GitHub pythonone. MS17-010. https://github.com/pythonone/MS17-010/blob/master/exploits/eternalblue/ eternalblue.py.
- [11] Palo Alto Networks. Unit 42、日本を対象に開発されたDragonOKバックドアマルウェアの新種を発見. https://unit42.paloaltonetworks.jp/unit-42-identifies-new-dragonok-backdoor-malware-deployed-against-japanese-targets/.

- [12] Kaspersky. CVE-2015-2545: overview of current threats. https://securelist.com/cve-2015-2545-overview-of-current-threats/74828/.
- [13] nao_sec. Royal Road IoC. https://nao-sec.org/jsac2020_ioc.html.