
HUNTING FOR ANDROID 1-DAYS: ANALYSIS

OF ROOTING ECOSYSTEM

Eugene Rodionov, Richard Neal & Lin Chen

Google, USA

rodionov@google.com

rmneal@google.com

larchchen@google.com

30 September - 2 October, 2020 / vblocalhost.com

www.virusbulletin.com

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

2 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

ABSTRACT
With every new release of Android OS it becomes increasingly difficult to gain root privileges on modern devices with
locked bootloaders due to improvements and new features in Android platform security. However, there still exist a number
of applications that offer one-click rooting solutions. Some of the largest rooting providers offer rooting as a service via
rooting SDKs too. Usually, such applications exploit unpatched 1-day vulnerabilities present in certain Android platforms
to gain root privileges. This is a viable strategy since many Android devices in the wild are not anywhere close to the most
recent security patch level.

During this research the authors took a deep look into the biggest rooting providers targeting modern versions of the
Android platform (Android 7.0 and higher) with the aim of better understanding the rooting ecosystem, which
vulnerabilities are being used by these applications, and what devices/platforms they are targeting.

In this presentation the authors will share the results of the long-term monitoring of one of the largest rooting providers for
Android devices: Kingroot. They will provide details of Kingroot’s modus operandi, including how to reverse engineer a
sophisticated network communication protocol with a C2 server to download the exploits, followed by analysis and
deobfuscation of collected payloads. Additionally, the authors will provide analysis of the rooting exploits for various
device models and Android builds that they managed to obtain in the course of Kingroot monitoring.

To conclude the presentation, the authors will speak about what Google is doing to protect Android users from unpatched
one-days.

INTRODUCTION
Android rooting allows users to gain privileged access to their devices by breaking the Android security model. Such
demand from users for having complete control over their devices has created an ecosystem of applications that provide
rooting services, in particular coming out of China. There is a subset of rooting applications that exploit privilege escalation
vulnerabilities to achieve root on the target device, especially for devices with locked bootloaders. Some of the rooting
applications integrate third-party SDKs that provide rooting services targeting a wide range of Android devices and support
exploitation of multiple privilege escalation vulnerabilities.

In this research the authors focused on a rooting provider used in one of the most popular contemporary rooting
applications – Kingroot. It claims to support an extensive list of Android devices, offering one-click rooting solutions for
them. One of the main goals of this research was to gain visibility into which vulnerabilities are exploited by the Kingroot
application and to obtain a comprehensive list of the exploits used and the device configurations that they are targeting. The
authors hoped to use these insights to improve the exploit detection capabilities of Google Play Protect and if any 0-days
were found, to get them patched in AOSP. To accomplish these goals the authors reverse engineered Kingroot, and
reconstructed its command-and-control (C&C) network communication protocol to be able to download exploits used by
the application to root the device.

The rest of the paper is organized as follows. It begins with an overview of the Kingroot application and its modus
operandi. Next, the authors provide details on the network communication algorithm Kingroot uses to fetch exploits from
the C&C server. The section ‘Payload Analysis’ provides information on exploits the authors managed to obtain from the
C&C server and the device configurations they target. In the ‘Remediation’ section the authors provide concluding remarks
on how information obtained in this research is used to protect Android users from unpatched 1-days.

KINGROOT CASE STUDY
Kingroot is one of the most popular rooting applications

1 targeting contemporary Android devices and offers two types of
rooting solutions: first, an application running on a desktop computer and communicating with the target device over USB,
PC root, and second, an Android application running on the target device, mobile root. The latter offers one-click rooting
services – a user just needs to download the application and it will manage the rooting process from exploiting a privilege
escalation vulnerability to gaining root privileges, up to installing a root manager on the device along with other rooting
tools. The mobile root version of Kingroot is the main target of this investigation.

From a high-level point of view, the Kingroot application primarily consists of the following components:

• UI code – part of the application that interacts with a user.

• Rooting SDK – a jar file that implements functionality for downloading exploits targeting privilege escalation
vulnerabilities from Kingroot’s C&C server and running them.

• Rooting tools – a collection of tools for managing the rooted device, such as root manager, su, etc.

The rooting SDK – one of the core components of the rooting application – is stored encrypted in the application’s asset
files. It is decrypted and dynamically loaded during application execution upon a request from the user to root the device.

1 As of December 2019 Kingroot announced it was shutting down its services. However, the application is still available for download on
third-party Android markets.

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

3VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The SDK comes with a licence file which contains information on applications that are authorized to use it. Once loaded,
the SDK obtains the package name and hash of the signer certificate of the host application and checks this information
against values in the licence. This suggests that this may be a third-party rooting SDK inside the Kingroot application. The
rooting SDK checks the authenticity of the licence file by verifying its RSA signature using a hard-coded public key.

To root the target device, Kingroot performs the following steps:

1. Drops rooting tools into its internal directory.

2. Fingerprints the target device and requests a list of rooting solutions (a.k.a. exploits) from the C&C server for the
particular device configuration of the target device.

3. Downloads and executes rooting solutions exploiting privilege escalation vulnerability(ies) targeted to the particular
target device.

4. Upon successful exploitation of a vulnerability, installs rooting tools onto system and recovery partitions.

In the following section the authors provide information on the network protocol that Kingroot uses to communicate with
its C&C servers to download a solution (i.e. exploit) targeting the client’s device.

NETWORK COMMUNICATION PROTOCOL
The implementation of the protocol in question is inherently multi-threaded, event-driven, and is specifically designed to
provide a robust communication channel in event of a sudden loss of connection due to a number of factors specific to
mobile devices, such as: loss of a signal, Android task prioritization, low battery, etc. Additionally, the protocol also ensures
confidentiality of the data transmitted over the network by using symmetric and asymmetric encryption.

Message layout

The messages Kingroot exchanges with its C&C server are called ClientShark2 (transmitted from the application to the server)
and ServerShark (received by the application from the server). Figure 1 demonstrates the layout of a ClientShark message.

Figure 1: Layout of a ClientShark message.

The fields of a ClientShark message have the following purpose:

• net_type, auth_type – integer, the type of the network connection: Wi-Fi, mobile network.

• build_no – integer, build number that identifies the implementation of the network protocol.

• session_id – unique randomly generated 16-byte identifier of the session between the Kingroot application and the
C&C server.

• cmd – integer, an identifier of the command/message type.

• seq – integer, a sequence number of the message in the communication protocol (i.e. identifier of the protocol
transaction). This field is used to match requests and responses from Kingroot and the C&C server respectively.

• flags – integer, determines if the payload transmitted in the message is encrypted and/or compressed.

• push –integer, used by the C&C server to send out-of-band commands/messages to the Kingroot application.

• data – byte array, the actual payload transmitted from/received by the Kingroot application.

Kingroot uses a custom TLV (tag-length-value) scheme to encode the fields referenced above in a ClientShark message.
For instance, it has separate tag-length values for the following types: Byte, Short, Int, Long, Float, Double, String, Map,
Array, List and Byte array. Complex data types such as class objects are deserialized into ClientShark messages using Map
type (i.e. it maps the names of object fields to their corresponding values). For integers, the scheme attempts to encode the
value using the least amount of bytes. As a result, the actual size of the encoded integer field within the message depends
on the actual value of the field.

2 The actual names used in the paper correspond to the names of Java classes in the application that the authors analysed in the course of this
research.

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

4 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Protocol setup stage

Communication between Kingroot and the C&C server can be split into two stages: setup and payload fetching. During the
setup stage Kingroot establishes a session with the C&C server and negotiates certain parameters like the session identifier
and encryption key to protect confidentiality of the data. Figure 2 demonstrates a sequence of messages that are exchanged
between Kingroot (C, on the left-hand side of the figure) and the server (S, on the right-hand side of the figure) during that
stage.

Figure 2: A sequence of protocol transaction during setup stage.

Before sending out the very first ClientShark message, Kingroot generates a 16-byte symmetric key to protect the
confidentiality of the data transmitted/received to/from the C&C server using the XTEA cipher. If we look at the
implementation of the key generation routine (as shown in the listing below) one can see that it uses an object of
java.util.Random

3

type to provide entropy for the new key. This effectively reduces the entropy of the generated key from
128 bits to 48 bits.

private String a(int p6) {
 java.util.Random v2_1 = new java.util.Random();

StringBuffer v3_1 = new StringBuffer();
 while (v0_0 < p6) {
 v3_1.append("abcdefghijklmnopqrstuvwxyzABCDEF" +
 "GHIJKLMNOPQRSTUVWXYZ0123456789".charAt(v2_1.nextInt(62)));
 v0_0++;
 }
 return v3_1.toString();
}

Once the session key is generated Kingroot encrypts it using a 1024-bit RSA algorithm with the C&C public key hard
coded in the application dex code and sends the result to the server (cmd=0x98). To confirm, the C&C server replies with a
message containing the session ID. From this point on, the communication between Kingroot and the C&C server is
encrypted using the XTEA cipher and the generated key.

Fingerprinting Android devices

As the next step in the setup stage Kingroot requests a session GUID from the C&C server, which identifies a type of the
communication session. To request the GUID Kingroot gathers extensive information about the hardware, firmware and
software configuration of the device and sends it to the server. The list below contains some of the information collected by
Kingroot:

• Unique device ID – IMEI for GSM and MEID or ESN for CDMA

• Wi-Fi MAC address

• Android ID

3 Class java.security.SecureRandom provides a cryptographically strong random number generator.

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

5VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

• CPU information -- cat /proc/cpuinfo, number of cores, maximum CPU frequency

• Screen size of the device

• Amount of available memory --/proc/meminfo

• Total size and amount of available space on system and data partitions

• Total size and amount of available space on the external storage

• Device build information

• Version of baseband firmware

• Device brand, manufacturer, product name and release version number

• etc.

Exploit fetching stage

Once Kingroot has obtained a session ID and session GUID during the setup stage it proceeds with obtaining information on
exploits available for the configuration of the user’s device. As shown in Figure 3, the exploit fetching happens in two steps:

• Request for a list of exploits that target the configuration – ClientShark message with cmd=0x14f3

• Request for statistics (number of successful exploitations/rootings) on exploits provided in the previous step; this
information is used to prioritize exploits received at the previous step – ClientShark message cmd=0x14f6

Figure 3: A sequence of protocol transactions during exploit fetching stage.

Along with ClientShark message 0x14f3 Kingroot submits information about the target device. This device fingerprinting
information is different from what was previously sent to the C&C server during the setup stage. This time Kingroot sends
the contents of the /proc/version file and the value of the android.os.Build.FINGERPRINT field to uniquely identify the
build of the system.

The response from the C&C server contains an array of XML data structures describing exploits to download. Each element in
the array describes a single exploit and contains a URL from where the rooting SDK downloads the actual binary.

PAYLOAD ANALYSIS
Understanding of the C&C network communication protocol enabled the authors to reimplement it in a laboratory
environment and allowed them to obtain multiple exploits targeting various configurations of Android devices from the
Kingroot C&C server. The rest of the paper is devoted to analysis of the payloads – downloaded exploits.

Payload containers

The content of Kingroot payloads has varied over time, though newer payloads tend to conform to the scheme described
here. The downloaded payload is a JAR file, which contains an ELF executable called krmain. Krmain is a 32-bit
executable. It performs some environmental checks, and if these pass, it unpacks further files from its .data section. The
files inside the .data section can be stored in raw byte format or gzip-compressed TAR files (named mypack.tar). Files are
often stored as a byte array, followed by an integer containing the byte length. This allows a form of automated brute-force
scanning to be used to identify likely files, which can then be extracted and examined. Older payloads have different
numbers and types of embedded files and some do not have the content/size variables nicely ordered to support automated
extraction. Manual analysis has to be used in some cases to extract the payloads.

Looking at the additional files, there is usually another ELF named for the exploit, and a configuration file with parameter
information to allow the exploit to work on different devices. A TAR file usually contains post-rooting-related utilities.

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

6 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The exploit ELF can itself contain further payloads stored in the same manner, but these do not seem to play any role in
exploiting the device. These are completely scrambled using what appear to be pseudo-randomly generated perturbation tables.

Simple scrambling of the first four bytes of a file’s data can occur:

def _unscramble_data(data):

 """Unscramble the given data.

 Args:

 data: The data to unscramble. This is modified in-place.

 Returns:

 Unscrambled version of the data.
 """

 raw_data = bytearray(data)

 # None of these bytes can be zero, as the % operator won’t work. So if they
 # are, just return the data.

 for index in range(0, 4):

 if raw_data[index + 4] == 0:

 return raw_data

 # Only the first four bytes are scrambled.

 for index in range(0, 4):

 scramble_key = len(data) % raw_data[index + 4]

 current_value = raw_data[index]

 raw_data[index] = ((current_value & ~scramble_key) |

 (scramble_key & ~current_value)) & 0xff

 return raw_data

This scrambling is enough to change any identifying magic numbers, for example for GZip or ELF headers.

Most, but not all, of the ELF binaries are compiled with obfuscator-LLVM. There seems to be a lot of common code
between instances of krmain and also pre- and post-rooting activities in the actual exploit binaries, so this helps understand
the behaviour of the obfuscated files.

Payload configuration file

The payload configuration files are usually called katana, though a small number of other names have been observed. They
follow the same general schema, though the exact record format is different for each exploit. A file consists of a series of
identically sized records, each of which contains a device identifier and configuration data for that device. Two examples of
configuration records for different exploits are as follows:

00000000 41 4b f2 a1 03 de 15 ed 88 44 b4 50 59 ad 78 32 |AK D.PY.x2|

00000010 21 c4 d6 77 6c 25 92 0d d9 cf b7 5a 4f 6f e9 d2 |!..wl% ZOo..|

00000020 cc d2 13 00 c0 ff ff ff a0 5d 08 00 c0 ff ff ff |.........]......|

00000030 0c ba 17 00 c0 ff ff ff d0 7e b6 00 c0 ff ff ff |.........~......|

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000090 70 83 6c 01 c0 ff ff ff 02 00 00 00 00 00 00 00 |p.l |

000000a0 e9 2f 4d f2 a8 6c 42 9a 92 3e 9e d3 d7 93 77 22 |./M..lB..> w"|

000000b0 d6 b7 4a a9 d4 85 a0 ad 79 bc 63 4c 47 6b 92 75 |..J y.cLGk.u|

000000c0 cc d2 13 00 c0 ff ff ff a0 5d 08 00 c0 ff ff ff |.........]......|

000000d0 0c ba 17 00 c0 ff ff ff 5c 6c b6 00 c0 ff ff ff |........\l |

000000e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

000000f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000120 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000130 68 83 6c 01 c0 ff ff ff 02 00 00 00 00 00 00 00 |h.l |

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

7VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

In this first example, two records are shown. The records are 0xa0 bytes in size. Each record begins with 32 bytes of device
identification data, and is followed by exploit-specific data. In this case, the data appears to be four kernel addresses, ten
empty values, another kernel address, and a small integer.

00000000 a4 34 fd 45 15 58 f3 67 69 35 0c dd 88 c8 f1 ff |.4.E.X.gi5 |

00000010 24 2d 65 c4 85 bd 4c 58 51 7d 95 3c 13 fc a3 d0 |$-e...LXQ}.< |

00000020 88 b4 1a 01 c0 ff ff ff a0 b3 1a 01 c0 ff ff ff |................|

00000030 44 b7 37 00 c0 ff ff ff 3c 9e 93 00 c0 ff ff ff |D.7.....< |

00000040 78 9e 93 00 c0 ff ff ff d0 3f 1b 01 c0 ff ff ff |x........? |

00000050 0c f1 19 01 c0 ff ff ff 90 bf fb 00 c0 ff ff ff |................|

00000060 a6 bf 4f f5 06 b5 02 1e 8a e7 c6 ec 0a 5b aa 52 |..O [.R|

00000070 26 25 e3 25 5e 46 85 5e be 3d ae c3 a4 31 7a 0c |&%.%^F.^.=...1z.|

00000080 88 84 19 01 c0 ff ff ff a0 83 19 01 c0 ff ff ff |................|

00000090 44 b7 37 00 c0 ff ff ff 68 53 93 00 c0 ff ff ff |D.7.....hS |

000000a0 a4 53 93 00 c0 ff ff ff d0 0f 1a 01 c0 ff ff ff |.S |

000000b0 0c c1 18 01 c0 ff ff ff 80 7f fb 00 c0 ff ff ff |................|

The second example also shows two records, which in this case are 0x60 bytes in size. They again start with 32 bytes of
device identification data, but the exploit data is eight kernel addresses.

One exploit with a different format file, called lollipop, has been seen. This has the potential for records of different fixed
sizes; as one is twice the size of the other, we conjecture that this is to support 32- and 64-bit configuration in the same file.
The file we have only contains records of the larger size, however.

The device identification data is generated from information about the device and the kernel it is running. This allows
Kingroot to parameterize exploits to support a range of devices without recompiling the main payload. The device
identification is worked out as follows:

SHA256(
 FORMAT("%s|%s|%.1023s",
 device_brand,
 device_model,
 kernel_version))

Device brand and model are taken from device properties, the kernel version string from /proc/version. The exploit binary
generates the required hash, and then reads the configuration file linearly either until it finds a match or until there are no
more entries.

Given sufficient examples of the information triple required to calculate the device identification hash (ideally collected
over time in order to see the different kernel version strings), it is possible to create a lookup table of hashes and therefore
see which devices/kernels are supported by particular exploits from Kingroot. The support period for a particular device, as
indicated by the kernel versions, can indicate when the exploit was patched (assuming that device vendors apply patches
promptly, and that Kingroot would maintain support for popular devices as far as possible).

Interestingly, we can usually only identify around 50% of the devices in any given configuration file. Obviously this shows
some form of shortcoming in our lookup table, but currently we do not have a definitive reason for why we do not have the
brand/model/version for so many devices. One guess is that Kingroot is targeting the Chinese device ecosystem and that
many devices which are not Android-certified and which do not have Google Play Protect installed exist there.

Examples of device information for Google devices that were supported by a Kingroot exploit are:

• 0525a720c6afbc972d4bd24176a93d418d086cf24c402ba291b317020630877d

- google

- Pixel XL

- Linux version 3.18.52-g0b28c9afaba8
(android-build@wphn10.hot.corp.google.com) (gcc version 4.9.x 20150123 (prerelease) (GCC)) #1 SMP
PREEMPT Wed Jul 26 21:51:18 UTC 2017

• c12c1c2296df9c5130709b69919839f6839c99a4602051382171c2b9c4708d95

– google

– Pixel XL

– Linux version 3.18.52-g99dda0323132
(android-build@wprf7.hot.corp.google.com) (gcc version 4.9.x 20150123 (prerelease) (GCC)) #1 SMP
PREEMPT Fri Aug 18 00:56:04 UTC 2017

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

8 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

In total we were able to create lookup entries for around 2.7 million sets of brand/model/kernel information. This data
allows us to identify 598 unique devices (a combination of device brand and device model) across 42 device brands
targeted by 12 Kingroot exploits over a time range from 2013-07 through 2018-10.

Different Kingroot exploits support very different numbers of devices/kernels. The exploit supporting the fewest devices
was m4u, which contained 73 device configurations, of which 52 came from just four different hardware brands. The
highest observed number of supported device configurations in a single exploit was 5,482 for tga, of which 3,610 device
types were identified. The information on the exploits is provided in the Exploit Analysis section of the report.

One notable exception to the presence of the device configuration file are the exploits for CVE-2016-5195, a.k.a. DirtyCow.
This vulnerability is a race condition resulting in incorrect permissions being applied to memory pages, so kernel addresses
are not required to exploit this.

Visualizing vulnerability

Given the existence of the device information lookup table, which contains kernel compilation date/time information, an
attempt can be made to visualize available vulnerabilities for a particular device or the identified devices as a whole.

The compilation time/date of the last supported kernel for a device is interesting, as this potentially shows the last kernel
that was vulnerable to a particular exploit, i.e. the next build had a patch applied and the exploit could not be made to work.
If Kingroot’s device support was driven by user requests for capability against particular devices/kernels, this could also
indicate a drop in demand leading to a reallocation of resources. It seems unrealistic that user demand for rooting support
on multiple devices from a given brand would drop simultaneously though.

The date/time of the earliest vulnerable kernel does not indicate when the vulnerability was discovered, as support for older
vulnerable kernels could be added at any time after the discovery depending on user demand. If devices are not receiving
updates, or users are not updating their devices, then it may be worthwhile to backport an exploit to older devices/kernels.

Looking specifically at the tga exploit in Figure 4, the last supported kernels on Google devices for this exploit (and hence
potentially the last unpatched kernel) were compiled in August 2017 (the first five rows in the figure). Devices from other
brands were apparently still vulnerable into 2018.

Figure 4: Comparison of Kingroot 1530/tga support for Google and some other OEM devices (2013-07 through 2018-10).

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

9VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

The situation for patching 1545/hecate was worse; some devices were vulnerable up to October 2018. This implies that
many device types sold in 2013 did not receive security updates after 2017 when hecate was fixed. We also believe that
these devices did not get updates in 2018 but most likely use of these devices dropped off rapidly after five years so the
Kingroot developers stopped adding support for them at this point.

Figure 5: Kingroot 1545/hecate support for OEM A devices (2013-07 through 2018-10).

Figure 6: Kingroot 1545/hecate support for OEM B devices (2013-07 through 2018-10).

Figure 7: Kingroot 1545/hecate support for Google devices (2013-07 through 2018-10).

Google Nexus and Pixel devices were fairly well supported by Kingroot early on, however there was then no support after
the third quarter of 2017, suggesting major improvements to the resilience of Google devices to privilege escalation
exploits around that time.

Figure 8: Overall Kingroot exploit support for Google devices (2015-06 through 2018-07).

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

10 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Exploit analysis

Table 1 lists a number of exploit payloads that were obtained during the investigation of Kingroot, mapping the payload
files to actual CVEs that they exploit. The blank fields in the table indicate missing values for the exploit file name and
configuration file name in the payload container. The blank field for CVE indicates the actual vulnerability exploited by the
payload hasn’t yet been identified.

ID14 ID25 Identifier string Exploit file name Configuration file name CVE

356 1000 PU

363 1000 MS3

437 1001 NFT

671
6

812 1002 CVR CVE-2013-6282

813 1002 MS2

814 1002 FT libfutex CVE-2014-3153

840 1003 SDC sdc32 N/A CVE-2016-5195
7

877 1002 VKE valkyrie 445c0900 CVE-2016-6787

909 1043 YME yumie64 katana CVE-2015-1805

910 1043 YME yumie CVE-2015-1805

919 1002 ODC 8 N/A Unsure

947 1003 M4U m4u64 katana Unsure
9

950 1009 IOV iov32 katana CVE-2015-1805
10

951 1010 IOV iov32 katana CVE-2015-1805

1512 1016 DTC dirtyc0w64 N/A CVE-2016-5195

1545 1001 HCT hct64 katana Unsure
11

1511 1028 IZA izanami katana CVE-2017-0403

1511 1028 IZA izanami64 katana CVE-2017-0403

1523 1003 MBS mebius64 katana CVE-2017-7533

1512 1005 MCW
12 sdc32-mtk N/A CVE-2016-5195

1516 1004 ONE one32 katana CVE-2017-8890
13

1513 1143 SDR schrodinger ?
14 CVE-2015-3636

1513 1143 SDR schrodinger64 lollipop CVE-2015-3636

1530 1023 TGA tga64 katana Unsure
15

1514 1051 WKL winkle ?
16 CVE-2015-0569

1514 1051 WKL winkle64 flintlock CVE-2015-0569

Table 1: List of exploits obtained from Kingroot C&C server.

4 This ID number comes from the download information.
5 This ID number is hard coded as a string in the krmain dropper binary, as is the identifi er string.
6 We were not able to obtain this payload.
7 VDSO-patching variant, persists by patching libc.
8 This payload contains a shared object exporting JNI_OnLoad rather than an executable, together with a very small DEX file that loads the SO
using a passed-in string for the name, and passes a string to a function in it.
9 There have been a number of CVEs in the driver concerned (e.g. CVE-2017-0500 to CVE-2017-0506) though this exploit uses a different IOCTL
to the known vulnerabilities – possibly patched as part of other fixes and never reported individually. All known vulnerable kernels were compiled
before mid-2017.
10 A modification of iovyroot [1].
11 Unsure; probably patched in November 2017.
12 Also referred to as MTKCOW.
13 Exploit code is very similar to [2].
14 The krmain file extracts as expected, however there is not a configuration file present.
15 Unsure; probably patched in November 2017. Has strong similarities to CVE-2017-8890.
16 The same situation as for schrodinger.

HUNTING FOR ANDROID 1-DAYS: ANALYSIS OF ROOTING ECOSYSTEM RODIONOV ET AL.

11VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

REMEDIATION
There are many CVEs reported and patched, but not all of these will be turned into exploits. Behavioural detection attempts
to look at what a piece of code does (or in the case of static analysis, what it might be capable of doing), in order to make a
decision about whether something is dangerous or not. Rooting exploits often need to interact with the device kernel in
some way in order to affect the device, which requires them to exhibit specific behaviours.

Understanding exploits and exploitation techniques allows us to develop behavioural signatures that can be applied to
unknown code to look for evidence of attempts to exploit vulnerabilities.

CONCLUSION
The number of devices supported by some exploits implies either significant manual effort in obtaining the configuration
values for each device, or reliable automation to obtain them. That said, we were not able to obtain a large number of
exploits due to the high number of exploits for device configurations unknown to us. Generally, each device either received
most of the overall set obtained, or a small subset of it. This suggests the pool of exploits available to Kingroot was limited.

Some of the exploits Kingroot has used are very similar to proofs-of-concept available on GitHub. Others are using
vulnerabilities that it is much harder to find information about, suggesting either internal research and development effort
or non-public sources.

The patching strategy of Android devices from different OEMs clearly differs. Exploits that seem to be patched in Google-
manufactured devices continue to work on other devices sometimes for months and years afterwards. This places some
users more at risk than others, depending on their choice of device.

Coincidentally, since we started this analysis work, a number of popular Android rooting applications have announced they
are closing their services down. This includes Kingroot. We don’t know what caused this nearly simultaneous decision
among large rooting app developers.

REFERENCES
[1] https://github.com/dosomder/iovyroot.

[2] https://github.com/thinkycx/CVE-2017-8890/blob/ec16acd01a6c0e9edc017cf5f66918ccf79a4b4b/
nexus6p%40kernel-3.10/jni/exp.c.

