
UNVEILING THE CRYPTOMIMIC

Hajime Takai, Shogo Hayashi & Rintaro Koike

NTT Security (Japan) KK

hajime.takai@global.ntt

syogo.hayashi@global.ntt

rintaro.koike@global.ntt

30 September - 2 October, 2020 / vblocalhost.com

www.virusbulletin.com

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

2 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

ABSTRACT
CryptoMimic (also called Dangerous Password) is an APT actor that has been observed since around March 2018. It is
reported that CryptoMimic attacks international businesses and organizations, in particular targeting cryptocurrency
companies. Several security researchers all over the world have already published reports on this attack, but they have only
dealt with the initial part of the attack. CryptoMimic is very careful and it is extremely difficult to observe the attack under
virtual environments including in a sandbox. As a result, there has been no detailed report that deals with the malware that
the attacker finally executes or how it behaves during the attack.

In this paper, we will reveal the analysis of an unknown malware sample (never reported before) and the picture of the
whole attack. We first introduce two initial samples (a LNK file and a macro-embedded MS Office file) used by
CryptoMimic. Then, focusing on the attack using the LNK file, we disclose the whole picture of CryptoMimic that we
observed in February 2020.

We detail how the attack proceeds from the initial sample to the final malware execution, along with the results of analysis
of the attacker’s behaviours and the executed malware. We also describe the various metadata that we discovered the
attacker had left on the victim. By leveraging the metadata, we try to unveil the attacker’s profile or attribution.

INTRODUCTION

Profile

CryptoMimic, the APT attack group we are chasing, is an actor also known as Dangerous Password, CageyChameleon and
Leery Turtle. Since April 2018, the group has been active with almost unchanged TTPs.

As reported [1, 2, 3], CryptoMimic targets banks and finance-related organizations, in particular those that are related to
cryptocurrencies. Targeted organizations exist worldwide, including in Japan, Russia, Europe and the US. Unlike other APT
attack groups, it seems that the group’s main objective is to earn money. The group’s activity is very vigorous, and we
monitored 15 attacks in March 2020 (see Figure 1). Interestingly, there were no attacks on Sundays.

F igure 1: Attack monitoring in March 2020.

Although the group actively attacks many organizations all over the world, the attributes of the group, including the country
from which it originates and the attack actors it relates to, remain unknown.

TTPs

Initial access

The majority of CryptoMimic attacks start with an email containing a link to a website or a LinkedIn message (see Figure
2). In most cases, the link to the website is shortened by Bitly. As soon as a user opens the link, a file is downloaded from a
cloud service such as OneDrive via a server prepared by the group. The email is tailored to each target. It sometimes
pretends to be sent by the CEO of the target organization or includes the name of the organization or service in the email
body or attached file.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

3VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Fi gure 2: Attack flow until file download.

Execution

The downloaded Zip file includes a document file, such as .doc or .pdf, and a LNK file. In many cases, the name of the
LNK file is something like ‘Password.txt.lnk’. Because the document file is password protected (Figure 3), the user is
fooled into opening the LNK file to check the password, which initiates the attack.

Fig ure 3: Password-protected document file.

The downloaded Zip file and the document file are sometimes designed to attract the target’s interest. The document file
might include the name of the target organization or contents relating to the target organization. The name of LNK file is
also changed according to targets. For example, if a target uses Japanese, the name of LNK file could be ‘パスワード.txt.
lnk’ (Figure 4).

Figu re 4: Content of downloaded Zip file.

Besides the LNK file, the group might use a document file with macros (see Figure 5) or a .chm file. But in recent attacks
the group has mainly used LNK files.

As soon as the LNK (or other) file is opened, it accesses a website using mshta.exe. The link to the website is shortened by
Bitly. The VBScript embedded in the website (Figure 6) is then read and executed by mshta.exe. The script subsequently
downloads other scripts and finally gains functionality as a RAT. In this manner, CryptoMimic gains control of the target
computer and steals sensitive information.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

4 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

CryptoMimic seems to go to great lengths to avoid providing the malicious file to third parties other than original target.
The download URL for the Zip file sent to the target becomes invalid promptly. Files including the Zip file are supplied by
leveraging a redirect from the website the group prepared to a cloud service such as OneDrive, but redirecting is available
for only two or three days. Even if the redirecting is available, the downloaded file may be replaced with a benign one. The
DNS record for the domain for the website the group prepared is deleted and becomes unreachable after a week or so. If
you receive and open the malicious file, the lifetime of the URL that mshta.exe accesses is as short as the download URL of
the malicious file.

Figur e 5: Document file with macro.

Figure 6: VBScript downloaded from C&C server.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

5VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Discovery

As the attack goes on, CryptoMimic sends a RAT called Cabbage RAT, written in VBScript in stages. In its early stage, it
checks the target’s environment. To be more specific, Cabbage RAT-B collects and sends the system and task information
of its working environment to the C&C server. If CryptoMimic doesn’t judge it as an attractive target, the attack won’t go
any further. It seems that the group identifies targets by IP or MAC address. The attack will stop if either were included in
the past target history. Existing public reports [1, 2, 3] don’t discuss the breach beyond Cabbage RAT-B.

Command and control

Cabbage RAT-C is controlled by CryptoMimic interactively. When we observed the attack, the group reviewed various
directories and stole files that the group thought interesting. The group’s favourite was files that include personal or
sensitive information, or financially-related ones. The group then investigated the system or network, and downloaded and
executed three executable files on the target system. They were a highly sophisticated RAT and malware for information
theft.

Though the attack by CryptoMimic has been ongoing, no detailed research has been published so far and the attributes of
the group remain unknown.

OBSERVATION

Overview

In February 2020 we successfully observed the whole sequence of an attack that started with a LNK file. We believe that
the observed attack was performed by CryptoMimic. As a result of deep analysis, it became clear that the group had used
some unknown malware never before reported, and executed commands on the victim host using a RAT during the attack.
The rest of this chapter will be dedicated to describing the attack we observed.

Attack flow

Figure 7 shows the overall picture of the attack we observed. Table 1 summarizes the components of the attack, including
files and malware. The attack started with a LNK file and the victim was infected by a RAT and malware that steals
information. Focusing on the former half of the attack, there are several similarities with CryptoMimic’s past attacks. For
example, there is a report that, in the past, the group used the technique to leverage a LNK file to let a victim download and
execute a dropper written in VBScript [3]. In addition, the source code of Cabbage RAT-A is almost same as that of the
RAT the group used in the past [3]. The usage of a decoy also has similarities with past attacks. All these similarities gave
us great insight into isolating the attacking group. On the other hand, prior to our study, it has never been reported that the
group uses msoRAT or a credential stealer.

Figure 7: Overall picture of the observed attack.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

6 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Item File path Past report Description

Downloader -A Password.txt.lnk Exists LNK file downloading and executing dropper

Dropper (fileless) Exists Dropper written in VBScript

Decoy
%APPDATA%\Local\Temp\
Password.txt

Exists Decoy text file

Downloader -B

%APPDATA%\Roaming\
Microsoft\Windows\
StartMenu\Programs\Startup\
Xbox.lnk

Exists LNK file installed on startup for persistence

Cabbage RAT-A
%APPDATA%\Local\Temp\
kohqxrz.vbs

Exists
RAT written in VBScript downloading and
executing Cabbage RAT-B

Cabbage RAT-B (fileless) Exists
RAT written in VBScript downloading and
executing Cabbage RAT-C

Cabbage RAT-C (fileless) Does not exist
RAT written in VBScript downloading and
executing browser info stealer

Browser info
stealer

C:\Users\Public\
RuntimeBroker.exe

Does not exist
Executable file stealing information saved by
browser

msoRAT C:\Users\Public\NTUser.dat Does not exist DLL file with RAT functionality

Credential
stealer

C:\Windows\System32\bcs.dll Does not exist
DLL file stealing OS authentication
information

Table 1 : Malware and files observed during the attack.

Timeline

Table 2 summarizes the timeline of the attack we observed. It shows that as soon as Downloader-A was executed, Cabbage
RAT-A initiated HTTP access to the C&C server and received a response after about an hour. It also shows that the whole
attack was completed in three hours or so. According to the timeline, the Windows event log was deleted at 12:27 and the
file we copied was deleted at 12:29. The attacker then performed destructive activity and left the victim. It is likely that the
attacker noticed that his activity had been observed and tried to wipe the traces of attack.

Time Subject Description

09:33 Downloader-A Downloader-A downloaded and executed dropper

09:33 Dropper Dropper created decoy text file and opened with notepad.exe

09:33 Dropper Dropper created Downloader-B and gained persistence using startup directory

09:33 Dropper
Dropper created and executed Cabbage RAT-A; Cabbage RAT-A initiated
HTTP access to C&C server

10:30 Cabbage RAT-A Cabbage RAT-A downloaded and executed Cabbage RAT-B

10:30 Cabbage RAT-B Cabbage RAT-B downloaded and executed Cabbage RAT-C

11:15 - 11:34 Cabbage RAT-C
Cabbage RAT-C downloaded and executed browser info stealer; browser info
stealer itself and its output were deleted after execution

11:35 Cabbage RAT-C Cabbage RAT-C downloaded and executed msoRAT

11:38 - 11:40 msoRAT msoRAT downloaded credential stealer and gained persistence

11:47 msoRAT msoRAT injected something into lsass.exe process

11:48
Cabbage RAT-A
Cabbage RAT-B
Cabbage RAT-C

Processes for Cabbage RAT-A, Cabbage RAT-B and Cabbage RAT-C were
terminated

12:23 lsass.exe lsass.exe deleted credential stealer

12:26 lsass.exe lsass.exe deleted registry entry for persistence

12:27 - 12:33 lsass.exe lsass.exe deleted Windows event log via wevutil.exe

12:29 lsass.exe
lsass.exe deleted copied credential stealer on the other directory; we copied
this credential stealer to bring out for further research

12:43 lsass.exe lsass.exe was terminated

 Table 2: Timeline of the observed attack.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

7VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Windows commands

In this attack, RATs written in VBScript or implemented as DLLs were used. The attacker launched several Windows
commands on the victim host via these RATs. Table 3 shows the list of commands that we observed. We think that the
attacker stole information on the victim host or investigated other hosts on the same network by leveraging these
commands. It is widely known that attackers who engage in APT attacks frequently use standard Windows commands to
avoid detection [4]. It seems that the same theory was also applied to this attack.

command
cmd.exe
cmdkey.exe
copy.exe
find.exe
ipconfig.exe
net.exe group
net.exe localgroup
net.exe user
net.exe view
netstat.exe
ping.exe
rmdir.exe
systeminfo.exe
whoami.exe
wevutil.exe

 Table 3: Windows commands executed on victim via RAT.

MALWARE ANALYSIS

Downloader-A

The origin of the attack was a LNK file named Password.txt.lnk. Figure 8 shows the command line prepared at the link
target of the LNK file. As shown, VBScript code will be executed as a result of downloading the HTML file from the C&C
server by leveraging mshta.exe.

F igure 8: Command line prepared at the link target of LNK file.

Dropper

The dropper is a VBScript file downloaded and executed by Downloader-A. It creates and executes a decoy, Downloader-B
and Cabbage RAT-A.

Drop and open decoy

Figure 9 shows the code that the dropper uses to create the decoy file (the code is partially modified here for better
understanding). It performs the following tasks:

• Creates the file ‘%TEMP%Password.txt’ using the echo command.

• Opens the file using notepad.exe.

• Deletes ‘%TEMP%Password.txt’ using the del command.

Fi gure 9: Code that the dropper uses to create the decoy file (modified).

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

8 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Drop and execute Cabbage RAT-A

Figure 10 shows the code that the dropper uses to create Cabbage RAT-A. It decodes the data stored in the variable ‘ln’
using Base64 and saves the decoded data in a file. The saved file is Cabbage RAT-A.

Fig ure 10: Code that the dropper uses to create Cabbage RAT-A (modified).

Next, Cabbage RAT-A is executed by the code below (Figure 11). The former part of the code checks whether there is any
existing process whose name contains the string ‘kwsprot’ or ‘npprot’. Its objective is to check if the Kingsoft Antivirus or
Net Protector anti-virus software is working on the victim. If found, Cabbage RAT-A is launched using cscript.exe. If not, it
is launched using wscript.exe.

Figu re 11: Code that the dropper uses to launch Cabbage RAT-A (modified).

Drop and persist Downloader-B

Figure 12 shows the code that the dropper uses to create Downloader-B. Downloader-B is configured to download a file
from the C&C server and execute it using mshta.exe. Apparently because we didn’t reboot the victim, we couldn’t observe
the file download and execution by Downloader-B.

Figur e 12: Code that the dropper uses to create Downloader-B (modified).

Figure 13 shows the code that the dropper uses to set persistence on Downloader-B. The dropper realizes persistence by
placing Downloader-B in the startup directory. During this task, the dropper checks if there is any existing process whose
name contains the string ‘hudongf’ or ‘qhsafe’ Its objective is to detect Qihoo 360 security products. If found,
Downloader-B is deleted from the victim.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

9VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 13: Code that the dropper uses to set persistence on Downloader-B (modified).

We confirmed that the shortened URL that Downloader-B accesses is redirected to the URL shown in Figure 14. Because
no file was downloaded when we accessed the URL, its detail remains unknown.

Figure 14: Target URL for shortened redirection URL Downloader-B accesses.

Cabbage RAT-A

As explained in the attack flow, three different VBScript RATs were used in the attack we observed. Because one VBScript
RAT creates another VBScript RAT in stages, we named them Cabbage RAT after their characteristics. Cabbage RAT-A,
written in VBScript, was downloaded and executed by the dropper. Figure 15 shows the code of Cabbage RAT-A. It
executes the data received from the C&C server using the Execute method. The target C&C server is given by the first
argument of Cabbage RAT-A.

Figure 1 5: Code of Cabbage RAT-A (modified).

Cabbage RAT-B

Cabbage RAT-B, written in VBScript, was downloaded and executed by Cabbage RAT-A. It sends an HTTP request that
includes information about the victim host to the C&C server once per minute. Figure 16 shows the data sent to the C&C
server (this is a sample and not the actual data we monitored).

Figure 16 : Data that Cabbage RAT-B sends to the C&C server.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

10 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

In accordance with the response to the above HTTP request, Cabbage RAT-B performs the following tasks. The C&C
server sometimes responds ‘22’, which means ‘do nothing’ (Table 4).

Response data Description

Includes string ‘20#’ Downloads VBScript code from the target included in the response (described later).

‘21’ Stops Cabbage RAT-B.

Includes string ‘23#’ Executes VBScript code included in the response. The code is encoded in Base64.

Table 4: List of tasks that Cabbage RAT-B performs.

If the response data includes the string ‘20#’, VBScript code is downloaded by the NStep function. Figure 17 shows the
part of the NStep function that downloads the VBScript. Response data from the C&C server is passed to the NStep
function via the argument cmd. As shown, the response data beyond ‘#’ is part of a URL. Cabbage RAT-B composes the
complete URL by adding a query parameter and downloads the VBScript code using the GET method. It then decodes the
downloaded VBScript code in the following order: Base64, XOR and Base64.

F igure 17: Part of the code executed if the response data contains the string ‘20#’.

During the attack we observed, Cabbage RAT-B downloaded Cabbage RAT-C from the URL included in the response and
executed it.

Cabbage RAT-C

Cabbage RAT-C, written in VBScript, was downloaded and executed by Cabbage RAT-B. Figure 18 shows the code of
Cabbage RAT-C. Cabbage RAT-C decodes the string stored in a variable using Base64 and executes it using the Execute
method. Its functionality as a RAT is implemented in the code executed by this Execute method. The variable ‘pu’ is a part
of a target URL with which the Cabbage RAT-C communicates.

Fi gure 18: Code of Cabbage RAT-C.

Figure 19 shows a flow chart of the code executed by the Execute method. It should be noted that without receiving a
proper response from C&C server, the subsequent command won’t be executed.

Fig ure 19: Flow chart of the code executed by the Execute method.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

11VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Table 5 shows a list of commands for Cabbage RAT-C. As shown in the response format column, the response from the
C&C server had multiple lines. The first line represents the type of command, and the second line represents the command
argument. Cabbage RAT-A and Cabbage RAT-B, described previously, had fewer commands and their main function was to
execute VBScript code downloaded from the C&C server, but Cabbage RAT-C has an additional function that enables it to
steal information from the victim host, to download or to upload files. Judging from the fact that the Windows commands
listed in Table 3 were executed by Cabbage RAT-C, it is natural to think that this is the one of main RATs that CryptoMimic
uses after successful breaching.

Response format Description

‘s’
‘k’

Stop Cabbage RAT-C

‘s’
(number)

Set interval (in seconds) for accessing the C&C server using the number in the second line

‘l’
‘/’

Send drive information of a victim to C&C server

‘l’
(folder path)

Send file and directory information designated in the second line to C&C server

‘c’
(command)

Execute command designated in the second line using WSH and send standard output to C&C
server

‘cd’
(folder path)

Set current directory

‘ps’
(VBScript code)

Execute VBScript code

‘psi’
(encoded data)

Execute VBScript code encoded in Base64

‘r’
(path)

Delete directory or file

‘e’
(command)
(arguments)

Execute command using WSH. Arguments are optional

‘u’
(filepath)

Download binary data from C&C server and save to designated filepath

‘d’
(file path)

Encode file in designated file path using Base64 and upload to C&C server

‘k’ Do nothing

Tab le 5: Command list of Cabbage RAT-C.

Browser info stealer

The browser info stealer is an executable file downloaded and executed by Cabbage RAT-C. We confirmed that it has
functionality to steal cookies and passwords stored by Google Chrome.

Argument

It is already known that the browser info stealer can perform tasks in accordance with the passed argument. Figure 20
shows an example usage of an argument.

F igure 20: Example usage of argument for browser info stealer.

Figure 21 shows part of the decompilation of the main function. As shown, the mbsicmp function evaluates the second
argument to perform the corresponding task.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

12 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Fi gure 21: Part of the decompile result for main function.

Table 6 shows valid options for second arguments and their descriptions. By passing certain options, the browser info
stealer extracts cookies or passwords stored in the victim host.

Option Description

-c Extract stored cookie to a file

-c2 Extract stored cookie to a file in different format

-g
Extract stored cookie for domains related Google (google.com or mail.google.com) to a file.
Output format is same as option ‘-c’

-p Extract stored password to a file

Ta ble 6: List of options passed as second argument.

Output format

Figures 22, 23 and 24 show the formats in which the browser info stealer outputs cookies or passwords.

F igure 22: Output format for option ‘-c’.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

13VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Fi gure 23: Output format for option ‘-c2’.

Fig ure 24: Output format for option ‘-p’.

Change encryption method of Google Chrome

Google Chrome stores cookie and password information on a local host, but they are part-encrypted. Figure 25 shows
how the browser info stealer decrypts them by using the CryptUnprotectData function. However, Google changed the
encryption method in Google Chrome 80, released on 4 February 2020 [5]. This change rendered the browser info
stealer unable to decrypt the cookies and passwords stored by Google Chrome 80 and later. We observed the attack on
10 February 2020, which was rather close to the date Google Chrome 80 was released, which would explain why
CryptoMimic couldn’t cope with the decryption. Since the decryption algorithm for the latest encryption method is
already publicly available on the Internet [6], we expect that, sooner or later, the group will update their tools to follow
the change.

Figu re 25: Part of the code for the browser info stealer.

msoRAT

msoRAT is a DLL file downloaded and executed by Cabbage RAT-C. This malware’s name comes from the file name it
reads and writes: ‘c:\windows\apppatch\msomain.sdb’. From here, we’ll focus on the analysis of msoRAT.

Packing

msoRAT is packed. Figure 26 shows msoRAT’s sections. It is only the .dat1 and .reloc sections that contain code or data.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

14 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figur e 26: Analysis of msoRAT using PEView.

The unpack process is implemented on the .dat1 section and unpacked code or data is written into the .text or .data section
(Figure 27, Figure 28). After unpacking, the function passed by argument ‘#1’ is executed.

Figure 27: .text section before unpacking.

Figure 28: .text section after unpacking.

Encrypted argument

Figure 29 shows the command that Cabbage RAT-C uses to launch msoRAT. As shown, Cabbage RAT-C executes
NTUser.dat using rundll32.exe. The ‘#1’ string included in the command line is a value that specifies the target function.
‘4pG2hIBvptiLeqF7MtBTTJ2fMSIlkJXBFH/9upgop6tiD3o=’ is an argument of the function.

Figure 2 9: Command that Cabbage RAT-C uses to launch msoRAT.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

15VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

We found that the argument of the function is a string encrypted using RC4 and encoded using Base64. The key for RC4 is
included in NTUser.dat. The decrypted string was separated by space. The latter two blocks represent the C&C server
connecting information (IP address and port number).

Figure 30 : Decrypted argument.

Obfuscation of DLL function

The process to call the DLL function in msoRAT is obfuscated and the obfuscation method has a unique characteristic.
Figure 31 shows the result of disassembly where msoRAT calls the ReadFile function. The dat0_ReadFile and dat0_
ReadFile_Main function obfuscate the DLL function calling process. ‘dat0’, which is included in the name of the
obfuscating function, represents the name of a section. Including other cases, the obfuscating process for the DLL function
calling is always implemented on the dat0 section. There are multiple jmp instructions in the DLL function calling process.
Though dat0_ReadFile_Main, shown in Figure 31, also contains a conditional jump (jnz) instruction, the same ReadFile
function is called regardless of the condition.

Figure 31: Result of disassembly where the ReadFile function is called.

Moreover, msoRAT can call a function without using a call instruction. Generally, a function is called using a call
instruction in assembly. rip register represents the memory address for the code currently executing and the call instruction
calls the target function by setting the memory address of the target function to rip register. Figure 32 shows how msoRAT
calls the target function using the xchg and retn instructions in combination. When it calls the ReadFile function, it swaps
the value stored in rsi and [rsp] using the xchg instruction. Because the rsi register stores the target DLL function address,
this xchg instruction means that the value stored in the top of the stack is replaced by the ReadFile function address. The
retn instruction is an instruction that stores the value in the top of the stack to rip register. By setting the ReadFile function
address in the top of stack to rip register, the ReadFile function is eventually called.

Figure 32: Calling target function using xchg and retn instructions in combination.

Command list
msoRAT has RAT functionality and performs various tasks in accordance with orders received from the C&C server. Table
7 shows a list of the commands that msoRAT accepts. We confirmed various commands including collecting victim host

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

16 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

information, uploading and downloading, all of which are implemented in ordinary RATs. Unlike Cabbage RAT-C, it has
commands that require WINAPI, such as privilege escalation or injection. One of its other characteristics is that it uses
HTTPS to communicate with the C&C server.

Command ID Description

43E04420456043D Send computer name, Windows version and edition to C&C server

43E044204340440 Send drive information to C&C server

43A043004400435 Send file information of designated directory to C&C server

44004350436043D Send size of designated directory to C&C server

437043C043A0430 Set current directory

43F0440043E0431 Execute designated command

43F043E04310440 Execute a command after assigning SeDebugPrivilege privilege to designated user

432043804420438 Delete designated file

447044004320444 Change date of creation, last access and last update for designated file

7A0441043A0430 Compress designated directory and upload

441043A04300447 Upload a file

437043004320430 Download a file

442043E0437043E Steal process information

43F044004320431 Terminate process with designated PID

43A043E043C0430 Execute designated command and send its standard output to C&C server

43F0440043E0433 Add registry

43F043E043C0435 Send beacon

43E0442043A043E Compress ‘c:\windows\apppatch\msomain.sdb’ and send to C&C server.

43D0430043A043E Write data received from C&C server to ‘c:\windows\apppatch\msomain.sdb’

442043F04560434 Initialize a socket

441043F0430043B Write a value to ‘c:\windows\apppatch\msomain.sdb’

434043E00700065 Inject PE file in designated path to explorer.exe

456043D00700065
Inject PE file received from C&C server; it is possible to execute it after assigning
SeDebugPrivilege privilege to designated user

4450440043F0435 Execute RuntimeBroker.exe twice, with -c option and with -p option

43E0437043C0432 Execute OpenEvent function

438043D04440441 Send PuTTY and WinSCP information to C&C server

43F04300440043E Execute RUntimeBroker.exe with -p option

Table 7: Co mmand list of msoRAT.

Credential stealer

The credential stealer is a file that is downloaded and persisted by msoRAT. Figure 33 shows the command used to realize
persistence. Windows has a system called Security Packages to handle the authentication of third-party systems. Security
Packages is a DLL file loaded by lsass.exe and its abuse enables the attacker to steal credentials (password for logged on
user, etc.) [7]. The command in Figure 33 sets a DLL file named ‘bcs’ as Security Packages.

F igure 33: Command line that persisted the credential stealer.

We found that this credential stealer is packed using Themida (see Figure 34). Themida is commercial packer and can be
used to obfuscate malware. We also found that this file was previously named bnt.dll (see Figure 35).

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

17VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Fi gure 34: Result of analysis of credential stealer using Exeinfo PE.

Fig ure 35: Result of analysis of credential stealer using PsStudio.

For now, we can’t confirm how the credential stealer works. But we suspect that it is a piece of malware that steals
credentials because it uses Security Packages.

Attribution

As mentioned previously, CryptoMimic targets the finance industry, in particular organizations related to cryptocurrency.
Because the group attacks many organizations all over the world, we believe that the group’s main objective is earning
money. There are many attack groups motivated by money, but the number of groups that mainly target the cryptocurrency
industry using sophisticated techniques and that can optimize the attack for each target is limited. The most notorious attack
group is Lazarus [8].

Summarizing the information gathered from initial samples provides some insight as to the identity of the attack group.
CryptoMimic mainly uses LNK files, but it also uses a document file with macros or a chm file. These characteristics are
similar to those of Lazarus activity as reported by Proofpoint [9]. According to this report, Lazarus used a LNK file (Figure
36), a document file with macros or a chm file, and targeted the cryptocurrency industry. The method using a URL
shortening service is also similar to CryptoMimic (see Figure 37).

Figu re 36: Target URL included in Lazarus LNK file.

Figur e 37: Target URL included in CryptoMimic LNK file.

In addition, there are similarities in the process implemented on the chm file to execute malicious code (see Figures 38,
39 and 40).

We focused on the Bitly shortened URL that CryptoMimic used and performed a deeper analysis. Adding ‘+’ at the end of
the URL provides extra information on the shortened URL, including its time of creation. Because our study of the time of

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

18 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 38: Result of decompile for Lazarus chm file (1).

Figure 39: Result of decompile for Lazarus chm file (2).

Figure 4 0: Result of decompile for CryptoMimic chm file.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

19VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

creation showed that there was no regularity in the time of creation, we think that the group created shortened URLs as
necessary. At first glance, it seems that the group’s working hours are round the clock. One APT attack group that has the
same working hours is Lazarus. A graph of Lazarus’ working hours was reported by Lexfo [10]. The graph we created
based on CryptoMimic’s Bitly URL creation time (Figure 41) has a similar shape to the one reported by Lexfo. Both show
that the main working hours are from 8:00 a.m. to 8:00 p.m., with a lunch break around noon.

Figure 41 : Bitly URL creation time in CryptoMimic.

Regarding the second sample, Cabbage RAT, Cabbage RAT-B is rather simple and Cabbage RAT-C is full-featured.
Although all RATs have some similarity in essence, Cabbage RAT-A and Cabbage RAT-B share some particular similarities
with PowerRatankba.A. For example, their command structure and URL pattern (use of port 8080 and inclusion of a
random value in URL parameters) look alike.

The third sample, msoRAT, is packed, but it has peculiar behaviour. The prime example is its injection method against
lsass. msoRAT injects a DLL file by adding the registry key ‘Security Packages’ to SYSTEM\CurrentControlSet\Control\
Lsa. According to the report created by US-CERT [11], the same method was used by a RAT called HOPLIGHT during an
attack by HIDDEN COBRA. Besides, CryptoMimic performed destructive activities at the end of our observation. In
particular, the group deleted all the created files, cleared the event log and also deleted numerous irrelevant files. As a
result, the victim became unable to boot Windows OS. Not many APT attack groups carry out such destructive activities,
and the best known group that behaves in this way is Lazarus.

As a result of studying a sample that was thought to have been used by Lazarus (bfcsvc.dll), we found multiple
similarities with msoRAT and the credential stealer. An analysis report by Intezer says that the origin of bfcsvc.dll is
Lazarus [12]. Other opinions that suggest a relationship between bfcsvc.dll and Lazarus can be found on VirusTotal [13]
and Twitter [14].

The following are the similarities we found in bfcsvc.dll compared to the samples used we observed during the attack:

• bfcsvc.dll is packed using a similar method to msoRAT.

• bfcsvc.dll implements obfuscation techniques like msoRAT in calling functions.

• bfcsvc.dll accesses ‘c:\windows\apppatch\msomain.sdb’ like msoRAT.

• The DLL name is exactly same as the credential stealer.

• Like the Credential Stealer, bfcsvc.dll has a function related to Security Packages.

Figure 42 shows bfcsvc.dll’s sections. As shown, there are sections without period, such as ‘text’ and ‘data’. It is only
the .cat1 and .reloc sections that contain valid code or data. It is confirmed that, as a result of the unpacking process,
valid data is written into the .text or .data section (see Figure 43). We also found a process that calls the DLL function
using xchg and retn instructions after multiple jmp instructions (see Figure 44). Moreover, a hybrid analysis report
shows that bfcsvc.dll accesses ‘c:\windows\apppatch\msomain.sdb’ [15]. All of these features are the same as those of
msoRAT.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

20 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Figure 42: Analysis of bfcsvc.dll using PEView.

Figure 43: Comparison of .text section of bfcsvc.dll before / after unpacking.

Figure 44: P rocess that bfcsvc.dll uses to call DLL function.

Figure 45 shows the analysis of bfcsvc.dll using PeStudio. It suggests that its original name was bnt.dll. Figure 46 shows
the functions that bfcsvc.dll exports. As shown, the SpInitInstance and SpLsaModeInitialize functions are exported. Both of
these functions are also exported by the credential stealer.

Taking these similarities into consideration, we believe that CryptoMimic and Lazarus have some connection. However,
there is no clear evidence that proves our supposition, which is just inference from a series of circumstantial evidence.
There could be a third attack group that masquerades as Lazarus, or all of these similarities might be coincidence.

Hunting & defence

CryptoMimic prefers to use a LNK file as an initial sample. The easiest way to detect the group’s LNK file is to create a
signature that detects the filename, such as ‘Password.txt.lnk’ or ‘パスワード.txt.lnk’ (Figure 47). The group has been
using the same filename for two years and will keep this convention. The fact that the link target of the LNK file is
mshta.exe and the link created by Bitly is passed as an argument are other notable characteristics.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

21VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

There are various traces on the group’s LNK files. Their Machine ID or MAC address are always different, but Volume
Serial Number and parsing path are sometimes the same. Table 8 shows the metadata of the LNK file that we collected. The
Volume Serial Number is the most interesting. Although there seem to be several environments that create LNK files, it will
work as a signature to some extent.

Volume Serial Number Parsing path Date modified

F2C4D353 C:\Windows\System32\cmd.exe 02/13/2020 02:10:28

64C0E1A7 C:\Users\Public\Downloads\Lists\Password.txt 02/23/2020 04:14:58

C4B156EA C:\Users\Public\System\New Text Document.txt 01/23/2020 02:51:53

C6192C1F C:\Windows\System32\mshta.exe 03/19/2019 04:45:40

DE285B24 C:\Windows\System32\cmd.exe 08/07/2019 04:27:35

32F76E3A Y:\Works_2018\16.June\06.22\Trading Sheet (June 2018)\ReadMe.txt 06/22/2018 06:45:29

CE1FA155 Y:\Works_2018\16.June\06.22\Trading Sheet (June 2018)\ReadMe.txt 06/22/2018 06:45:29

1AEEE0BD C:\Users\BEST\Desktop\vbox_share\vaccine\js\1.txt 08/09/2017 02:34:55

Table 8: Metad ata of LNK file.

Figure 45: An alysis of bfcsvc.dll using PeStudio.

Figure 46: Fun ctions exported by bfcsvc.dll.

Figure 47: File name customized by target.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

22 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

Document files with macros have some features. In many cases, where the macro isn’t enabled, the document file returns a
message like ‘This document is protected by GDPR. To see data enable content’. Sometimes ‘Authors’ or ‘Last saved by’
stay the same for long periods. These would be good candidates for a signature.

The C&C server with which the initial and second sample communicate also has several characteristics. For example, the
C&C server with which Cabbage RAT-A and Cabbage RAT-B communicate keep working for about a month. The C&C
server with which Cabbage RAT-C communicates stays unchanged for about two months. It seems that these servers are
built by XAMPP on Windows, but their IP addresses were varied. Because an IP address managed by an educational
institution was included, some could be cracked by CryptoMimic. Most of the domains used for C&C servers pretend to be
cloud services. The group used the DDNS service in the first part of 2018, but has started registering its own domains since
then. The group’s favourite domain name registers are NameCheap, NameSilo and PublicDomainRegistry. Table 9 shows
some domain names that CryptoMimic used. Special attention would be required for such odd domain names that pretend
to be legitimate services.

Domain

office.onedriveglobal[.]com

onedrive.onedriveglobal[.]com

mail.gdrvup[.]xyz

docs.gdriveshare[.]top

drives.googlecloud[.]live

 Table 9: Example domain names that CryptoMimic used.

The URL for the C&C server used by Cabbage RAT-C also has an interesting feature. Until April 2018, the group used
/content.php. But from October 2018 to August 2019, the URL was /open plus a dynamic parameter starting with ‘id’.
Since then, the URL has been /edit plus a dynamic parameter starting with ‘id’, which has remained unchanged for years.

CONCLUSION
CryptoMimic is an active APT attack group that mainly targets cryptocurrency organizations, that has been active since
2018. The group starts its attack with a LNK or document file, investigates the victim’s environment or steals information
using a RAT written in VBScript. It also uses msoRAT or a tool that can steal credentials. In this paper, we have discussed
an actual attack by CryptoMimic that we observed and have introduced the attack origin and the malware used along with
the results of our detail analysis.

At the same time, we have considered the attribution of the group from all aspects. Unfortunately, there is no clear
evidence, but we note that the group’s objective and attacking technique are similar to those of Lazarus. There might be
some relationship between CryptoMimic and Lazarus. We continue to consider the attribution of CryptoMimic.

Finally, it is likely that CryptoMimic continues working actively, targeting the finance industry, especially cryptocurrency
organizations, worldwide. To protect yourself from CryptoMimic attack, we recommend leveraging the information that we
proposed in this paper for detecting and defending.

REFERENCES
[1] JPCERT/CC. Spear Phishing against Cryptocurrency Businesses. https://blogs.jpcert.or.jp/en/2019/07/spear-

phishing-against-cryptocurrency-businesses.html.

[2] ThreatBook. The Nightmare of Global Cryptocurrency Companies - Demystifying the “DangerousPassword” of
the APT Organization. https://threatbook.cn/ppt/The%20Nightmare%20of%20Global%20Cryptocurrency%20
Companies%20-%20Demystifying%20the%20%E2%80%9CDangerousPassword%E2%80%9D%20of%20the%20
APT%20Organization.pdf.

[3] Cyber Struggle. Leery Turtle Threat Report. https://cyberstruggle.org/delta/LeeryTurtleThreatReport_05_20.pdf.

[4] MITRE. Command and Scripting Interpreter: Windows Command Shell. https://attack.mitre.org/beta/techniques/
T1059/003/.

[5] NirSoft. Tools update for the new encryption of Chrome / Chromium version 80. https://blog.nirsoft.net/2020/02/
19/tools-update-new-encryption-chrome-chromium-version-80/.

[6] GitHub. GitHub - agentzex - chrome_v80_password_grabber. https://github.com/agentzex/chrome_v80_password_
grabber.

[7] MITRE. Security Support Provider. https://attack.mitre.org/techniques/T1101/.

[8] malpedia. Lazarus Group. https://malpedia.caad.fkie.fraunhofer.de/actor/lazarus_group.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

23VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

[9] Proofpoint. North Korea Bitten by Bitcoin Bug: Financially motivated campaigns reveal new dimension of the
Lazarus Group. https://www.proofpoint.com/us/threat-insight/post/north-korea-bitten-bitcoin-bug-financially-
motivated-campaigns-reveal-new.

[10] Lexfo. The Lazarus Constellation. https://blog.lexfo.fr/ressources/Lexfo-WhitePaper-The_Lazarus_Constellation.
pdf.

[11] US-CERT. MAR-10135536-8 – North Korean Trojan: HOPLIGHT. https://www.us-cert.gov/ncas/analysis-reports/
AR19-100A.

[12] Intezer. Intezer Analyze - 777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.
https://analyze.intezer.com/#/files/777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.

[13] VirusTotal. VirusTotal - 777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.
https://www.virustotal.com/gui/file/777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b/
detection.

[14] Twitter. Twitter - blackorbird. https://twitter.com/blackorbird/status/1176745824329424896.

[15] Hybrid Analysis. Hybrid Analysis - 777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.
https://hybrid-analysis.com/sample/777f03eda81f380b0da33d96968dcf9476e6e10459a457f107fec019bc26734b.

UNVEILING THE CRYPTOMIMIC TAKAI ET AL.

24 VIRUS BULLETIN CONFERENCE SEPT - OCT 2020

