

Mobile messaging attacks on

AdaptiveMobile Security

STK, A-OK?

Cathal Mc Daid / @mcdaidc

#VB2021 7-8th Oct 2021

vulnerable SIMs

an Enea company

Introduction - what did we set out to answer

- In VB2019 we revealed the Simjacker attacks
 - Exploit of SIM Card application by Surveillance companies
 - Extracting info from tens of thousands of mobile phone
 - Vulnerability present on several hundred million SIM cards
- The Simjacker Attack used **binary SMS** as a delivery mechanism. Here we look at:
 - 1. Binary SMS attacks, are there other similar vulnerable applications?
 - 2. Reaction of industry and attackers to revelation of Simjacker?

Hackers Use Spyware to Track SIM Cards

U.S. Politics Economy Business Tech Markets Opinion Books & Arts

Telecom security researchers identify 'Simjacker' spyware, used to track SIM cards in Mexico, Colombia and Peru

ALL STREET JOURNAL.

More info: www.simjacker.com

Binary SMS: Scale and Identification

Can occupy a large percentage of Mobile Operators traffic

Uses: Missed call notifications, change roaming settings, change SIM Card settings etc

(Mostly) 3 GSM-MAP parameters used to Identify Binary SMS

- TP-PID
- TP-DCS
- TP-UDH

Percentage of Binary SMS Type Per Operator

F

Malicious uses of Binary SMS

- At least 28 (known) separate vulnerabilities in last 20 years:
 - General Complexity increasing over time
 - Initial were simple DoS
 - Most targeting Device/OS, but 25% targeting UICC

mber 4, 2019

5

UICC Application destined Binary SMS – When to Worry

- Simjacker (plus others like WIBattack), used binary messages that were directed to the specific vulnerable UICC (SIM Card) application by the **TAR** value
 - Example TARs (*Toolkit Application Reference*) for S@T Browser
 - 0x505348 (PSH)
 - 0x534054 (S@T)
- Allowed to be executed by the UICC application by the SPI value setting
 - SPI1* Value (Leftmost 5 bits) == 0 / No
 security
 - Note: Ambiguous setting of this in S@T specs was cause of Simjacker vulnerability

We looked to see were there <u>more</u> of these vulnerable SIM Card Applications

Other Vulnerable SIM Card applications

Source: Analysis of UICC destined Traffic to vulnerable TARs from 1 year of global inbound roamers

Where are these TARs used

Detected 30 unique TAR values (UICC applications),

Active in 50 operators from 39 countries,
with zero security set

Note: Varying activity per TAR

Threat level: Are all of these TARs Vulnerable?

Entropy per TAR : Average Sample Entropy (x) by Average Shannon Entropy (y)

Threat level: What could be achieved and Scale

- What do these UICC application do
 - Majority: Notification, Contacts exchange
 - Attacks limited, although these could be exploited
 - However some TARs (e.g 0xb...) have access to sensitive info
 - Could be used for location tracking (EF_{LOCI}), potentially extract info from SIM Card: IMSI, SIM Key (K_c - if phone on), Roaming settings

• Subscribers potentially affected ?

- Theoretical maximum(unrealistic): ~770 million
 - some TARs were used very infrequently
- Very conservative : ~37million SIM Card
- Probable: less than <100m
- <u>NO</u> sign of these UICC applications being exploited
- All identified affected operators informed

Simjacker Vulnerability – looking back, and forward

Issues with communicating to industry in 2019:

- Very obscure technology but wide ability, only mobile operators could mitigate
- Being actively exploited by sophisticated surveillance company to track thousands of people
- Widescale use (61+ known mobile operators, 29+ countries, with potentially up to a billion subscribers) **+ unknown more operators**

Plan to inform community via **GSM Association CVD program**, but:

- **Gaps** in participation of specific operators in GSMA Working groups
 - Lesser concerns: Effectiveness, leakage (to attacker), others

How to make sure all vulnerable operators know (safely)?

GSMA Coordinated Vulnerability Disclosure (CVD) Programme

Welcome to the GSMA Coordinated Vulnerability Disclosure Programme

> Home

© Copyright 2021. All rights Reserved.

Images courtesy of https://io.netgarage.org/logo/ ¹¹

Staged Approach to Inform Industry

- June -> Sept 2019: Inform all community as best as possible through GSM Association via CVD program (and direct contacts)
- 2. Sep 12th 2019: Do initial 'Public notification' with publicity to notify any unaware mobile operators
 - Give concepts but limited technical detail so attacks could not be replicated.
 - However this causes other problems in interim: some observers either confused issue with earlier research OR struggled to believe it
 - Point mobile operators to the GSMA where full technical info available
- 3. Oct 3rd 2019: Later (+4 weeks) do full public Technical Information release

Was this the right approach?

Karsten has done amazing research into SS7 security and seemingly not listened to as he should have been theregister.co.uk/2013/09/23/whi...

\heartsuit	8 Û	J	129	\bigcirc	202	≏	
	/ess @VessOnSecurity						•••

I've been researching the SimJack issue and the more I am, the more something smells fishy about it...

4:51 PM · Sep 16, 2019 · TweetDeck

47 Retweets 7 Quote Tweets 135 Likes

computing

Doubts raised over Simjacker security flaw

Dev Kundaliya

18 September 2019 •

...and I took that personally

Reaction of Mobile Operators

Count of Operators using S@T Browser with MSL ==0

E

14

Reaction of Simjacker Attackers

Simjacker Evasion techniques

Simjacker Evasion techniques

Scale of Attacks

Temporary gaps over time allow us to make estimates on scale & devices tracked

Wide scale of devices tracked:

- Largest Type: 91.7% Smartphone
- Largest Brand: 30.2% Apple
- Largest Model: 4.3% iPhone 12 Pro Max

Representative of Mexican market, not device vulnerability

Extrapolated Simjacker attacks in Mexico pre-detection:

- ~259k location lookups per year
- ~31k unique subscribers per year

Attackers not going away – constant exercise to detect and block

Conclusions

- Binary SMS vulnerabilities attacks happen, and will continue to happen
 - Work ongoing within the industry to define defences
- We uncovered many potentially vulnerable SIM Card applications – *Mobile Operators need to be aware and focus on security*
- Surveillance companies react faster than Mobile Operators
 - Slow is fast, old is new, but threat intelligence is key

Thanks to : Ryan Dalton, Martin Gallagher, the Data Intelligence & Threat Intelligence Unit teams within AdaptiveMobile Security as well as our Mobile Operator customers + GSM Association.

an Enea company

© Copyright 2021. All rights Reserved.