
REVERSE ANDROID MALWARE LIKE A JEDI
MASTER
Axelle Apvrille
Fortinet, France

aapvrille@fortinet.com

7 - 8 October, 2021 / vblocalhost.com

www.virusbulletin.com

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

2 VIRUS BULLETIN CONFERENCE OCTOBER 2021

 ABSTRACT
In this paper, we use four new Android reverse engineering tools – Dexcalibur, House, MobSF and Quark – over malicious
samples of 2020/2021. We explain how best to use or customize the tools, and highlight their strengths and limitations.

 PRESENTING TOOLS
Every Jedi padawan has reversed Android malware using Apktool, Baksmali and a disassembler. Some of the more
experienced have probably written automated plug-ins or scripts (for Radare, JEB) or implemented hooks using Frida.
Those tools are excellent, useful to padawan and masters alike. But there are new tools: Dexcalibur (2019), House (2018),
Quark (2019) and MobSF (2015). In this paper we focus on these four tools and their use in Android reverse engineering
(RE).

• Dexcalibur [1] and House [2] can both be seen as web front-ends to Frida [3]. They help set or customize Frida hooks
on interesting functions. With Dexcalibur, Frida hooks can be enabled by simple mouse clicks. There is little need to
know how Frida hooks are implemented, except when you need to customize them. With House, the approach remains
close to the implementation: the web interface loads Frida templates. Those can be customized at will, and run. Only a
few tasks (e.g. class enumeration, HTTP access monitoring) are press-button style. In this paper we use Dexcalibur
v0.7.9 and House cloned from its repository in March 2021.

• MobSF is an open-source ‘automated, all-in-one mobile application (Android/iOS/Windows) pen-testing, malware
analysis and security assessment framework capable of performing static and dynamic analysis’ [4]. It features both
static analysis, helpful for overview of the sample, and dynamic analysis, based on Frida hooks. In this paper we use
MobSF 3.4.4 beta.

• Quark is different, and only works for static analysis [5]. Quark’s engine parses the sample’s code to detect suspicious
combinations of API calls and permissions. The combinations are described in rules. Over 150 rules are shared in a
GitHub repository; additional rules can be created easily. In this paper we use Quark version 21.5.1.

 TEST SAMPLES
The Android malicious samples we refer to in this paper are listed in Table 1. They have been selected because (1) they are
recent and (2) they exhibit particular features (packing, native library...).

SHA256 sum Name Date
1a8c17ad1a790554278b055bdb946d4597ba9af6be3611ee6311b90c7f7848c5 Android/EventBot [6] April 2020
f82d6f24af2a4444c696c64060582d8aed6280da578c4dea3bb71bd6a11ebcf8 Android/Sandr [7] June 2020
f699f9e50e8401943321d757a9c1bab367473f102c0abfb57367e9252aae7fde Riskware/

Tenpack!Android
Feb 2021

fd5f7648d03eec06c447c1c562486df10520b93ad7c9b82fb02bd24b6e1ec98a
or 9379f91ddd9326bc1a8cf2fe4a22951d0859b2b7f88ffe68b023a97d59130810

Android/Flubot [8] March 2021

a25363b68faa8188b99622d8909921a4026ea7241df6377d0a6374d2b2b4e08c Android/Oji [9] May 2021

aad80d2ad20fe318f19b6197b76937bf7177dbb1746b7849dd7f05aab84e6724 Android/MoqHao [10] May 2021

8810ca80d21173528be71109cd9e5a73afce98a080892643ffdcbe53ac9b6893 Android/Ksapp [11] May 2021

dc215663af92d41f40f36088ec1b850b81092ea94a4a061a9ce88178daee965a,
0da75ac97f4ec8954a961c270bcbe75bd2671c65cf25db45540b70f1ff403e31

Android/Alien [12] Sept 2020,
May 2021

Table 1: List of test samples used in the paper.

 USING THE FOUR TOOLS FOR COMMON RE TASKS

 Unpacking malware

Malware analysts commonly encounter packed Android malware [13] (e.g. ApkProtect, Bangcle, etc.). The malicious
payload is hidden in the APK, ‘unpacked’ by a packer whose sole goal is to make reverse engineering more difficult and to
conceal the payload. The most common implementation consists of using DexClassLoader to dynamically load a hidden
DEX file. The four tools typically detect use of DexClassLoader. Quark detects it with a simple rule (example: [14]). The
other three rely on Frida hooks.

In the Android API, the first argument of DexClassLoader’s constructor is the path of the DEX file to load dynamically.
Dexcalibur, House and MobSF show method arguments, hence they are able to display the path of the DEX. The analyst
then just needs to retrieve the executable at this location using adb pull, and analyse it.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

3VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 1: Dexcalibur detects live use of DexClassLoader in a sample of Riskware/Tenpack.

Figure 2: With House, go to the ‘Enumeration’/‘ClassLoaders’ tab. This displays a customizable Frida script. Actually, it does
not need any modification: press the ‘Load Script’ button. The ‘Enum Outputs’ show that Android/EventBot dynamically loads

a JAR.

With Dexcalibur, we have to make sure DexClassLoader is probed (by default, it is). If it isn’t, click on the ‘Probe ON’
button. If, for some reason, the hook is not present at all, you can search for it in the ‘Static Analysis’ tab.

Beware not to hook only DexClassLoader: there are similar class loaders, e.g. PathClassLoader (replacing the
deprecated DexFile) and InMemoryDexClassLoader. The latter, introduced in Android 8.0, does not load a payload
DEX from a file but from memory. Consequently, there is no full path or file to grab on the device. The solution in that case
is to add a Frida hook that automatically dumps the payload byte array to a file [15].

Besides hooking class loaders, there are a few other strategies for unpacking dynamically [16]: hooking file creation or
deletion (at Java level or system level) [17], dumping the memory (e.g. [18]).

Figure 3: Search for DexClassLoader in the ‘Static Analysis’ tab and select ‘Probe ON’ to hook its constructor.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

4 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 4: In MobSF, click ‘API Monitoring’, then ‘Start Instrumentation’. A new button, ‘Live API Monitor’, appears at the
top; click on it, and see next image.

Figure 5: Live API monitoring in MobSF detects that Android/Alien loads a DEX.

Some clever pieces of malware load DEX dynamically from native libraries. This is the case of Android/MoqHao. It is
difficult to analyse with the four tools (as we will see later). Finally, note that VM-based packers and packers for native
code are on their way [19], but haven’t been used in malware yet.

Analy sing dynamically loaded DEX

All four tools have difficulties accessing/hooking inside a dynamically loaded DEX.

This is an issue for RE because it is this dynamically loaded DEX that typically holds the interesting malicious features
(payload), whereas the wrapping DEX (packer) is of no importance (apart from making reversing harder).

There are two solutions:

1. Manual solution. Retrieve the payload DEX (see previous paragraph), and analyse it with a disassembler. Note that
only Quark is able to process the payload DEX, the other three tools do not support DEX.

2. Automatic solution. Write a Frida hook that hooks inside the dynamically loaded DEX. Writing such a hook
requires experience ([20]). Then, load the hook in a dynamic analysis tool. In theory, it should work, but I have only
managed to get it to work with House (not Dexcalibur or MobSF), and even with House the process is not reliable
(sometimes it works, sometimes it doesn’t!).

Figure 6: Configuring House to hook inside dynamic code. Fill class name and method. Despite the name do not fill the
entry DEX/Jar path.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

5VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 7: This screenshot of House shows live string de-obfuscation inside the dynamically loaded DEX of Android/Alien.

De-obfu scate strings

Another typical task for malware analysts is string de-obfuscation. It can be done statically with a stand-alone program,
implemented after close reversing of the obfuscation code. Some advanced decompilers, such as JEB, automatically
perform easy decryption/de-obfuscation, or allow the execution of custom scripts.

The other way to go is dynamically. This is much faster: nearly no RE or code to perform. The downside is, of course, that
it will only de-obfuscate code it runs into. The strategy consists of hooking the de-obfuscation functions (to find via static
reverse engineering) or, if standard encryption is used, hooking methods such as Cipher.doFinal() to get the plain text.

With Dexcalibur, search for the de-obfuscation method in the ‘Static Analysis’ tab, and probe it. Then, slightly edit the
hook. Click on the ‘Probe OFF’ button to turn it ‘ON’. This adds the corresponding Frida hook. Then, in the ‘Hook’ tab,
select the hook and slightly edit its code to display the output (add the output variable to ‘data’ JSON item).

var ret = meth_xxx.call(this ,arg0);
/* In data, add "ret" to display the output */

send({ id:"yyyyyyy=",

msg:"javax.crypto.Cipher.doFinal(<byte>[])<byte>[]", data:{ret}, action:"Nonebefore", after:true
});

Figure 8: In Dexcalibur, the hooked encryption methods show the cipher text (input) and plain text (ret) for Android/Ksapp.

Figure 9: In this sample of Android/Alien, we configured House to hook the de-obfuscating function. Each time the function
is called, House displays both the input (obfuscated) and the output (plain text).

Communica tion with the command-and-control (CnC) server

No tool is guaranteed to spot the IP address of the CnC. Nevertheless, they can help. For instance, MobSF’s static analysis
lists the domains and IP addresses used by the malware. In practice, there are often false positives, and sometimes the tool
completely misses the CnC altogether, especially when the malware is packed.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

6 VIRUS BULLETIN CONFERENCE OCTOBER 2021

In some malware, the malicious code conceals the IP address of the CnC or any remote host it contacts. Dynamic analysis
is helpful in such circumstances because we automatically get the resulting IP address / names. For example, with
Dexcalibur, add hooks for the URL constructor and the openConnection() method.

Bypass ant i-reverse tricks

Android malware sometimes attempts to detect emulators, debuggers, rooted environments, or even Frida hooks. While this
has no effect on static analysis, it makes dynamic analysis harder. Typically, protections are based on the use of specific
APIs (e.g. isDebuggerConnected()), the presence of given files (e.g. su), named pipes, processes, symbols or
applications (e.g. com.noshufou.android.su), debug /default values (e.g. 15555215554 as phone number on
emulators), stack trace or libc-level checks – see [21], [22], [23] and [24].

For a malware analyst, the first step consists of detecting those protections. To do so, MobSF relies on APKiD [25], a tool
that focuses on identifying packers, obfuscators, anti-VM and anti-debug tricks. With Quark, we can typically implement a
rule to detect use of isDebuggerConnected. Unfortunately, Quark will be inefficient by design on most other tricks
(Quark cannot detect specific strings, files, pipes or processes).

Figure 10: House has been configured to enable HTTP monitoring (‘Monitor’ tab, then ‘Enable/Disable’ button). Here it
shows that Android/EventBot contacts hxxp://ora.studiolegalebasili.com/. Better than Wireshark, House shows that the call

occurs from a method named com.lib.sendPost. We can hook that method to display every packet that gets sent.

Figure11: MobSF uses APKiD to detect anti-debug and anti-VM tricks, here in Android/Ghimob.

Once the protection is identified, we must try to bypass it. [26] hosts a collection of Frida bypasses. The hooks can be
added/loaded to Dexcalibur, House or MobSF. MobSF even comes with built-in detection of root environment and
debuggers.

Frida native-level hooks (e.g. [27]) are not supported yet by Dexcalibur, and their status is uncertain for House and MobSF.
If such a hook is required, we have to run our own Frida server and client. Also, some anti-Frida techniques, such as the

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

7VIRUS BULLETIN CONFERENCE OCTOBER 2021

libc.so tampering check [28], are way more difficult to bypass. Fortunately, we haven’t ever seen such advanced
techniques in malware.

Figure 12: Bypassing root/debugger detection is just a matter of clicking the right box in MobSF.

PRACTICAL CASES

Android/Oji. G!worm

The Android worm Oji re-surfaced in May 2021 with a fake COVID-19 vaccine registration campaign. It propagates via
SMS to victims located in India and using a specific operator. It also asks the victim to share the app on WhatsApp. The
sample I analysed uses AES/CBC, but the code is wrong: the cipher text does not decrypt as it is not a multiple of 16.

First, all tools are heavily impacted by the fact they are unable to tell the difference between code from third-party kits (for
example, this sample uses com.startapp, an in-app ads SDK) and the malicious part (com.omcamra.sevendra). As far
as I know, the only tool which takes this into account is my own tool [29].

Quark manages to detect that the malware reads contacts (under a slightly misleading crime name ‘Read sensitive
data(SMS, CALLLOG, etc.) ’). The other results are not very relevant and are polluted by alarms raised by third-party kits.
Also, the general threat level ‘Moderate Risk’ and ‘total score 153’ do not seem appropriate for malware analysis.

MobSF’s static analysis is more helpful, but still polluted by references to third-party kits. At least the tables display the
path of the code which performs the action, so it is easier to rule out third-party code (e.g. StartApp). As for its dynamic
analysis, it works well but it is unpleasant to use because of silly ergonomics issues (small columns, difficult to scroll, no
search etc. – probably this will be improved in future versions).

In this particular sample, the decryption fails (a bug of the code?), but this is difficult to spot with MobSF. It does show in
Android’s logcat but there are many lines, and no particular highlight.

6-0411:07:58.2621908319083WSystem.err: java.lang.Exception: [decrypt]
error:1e00006a:Cipherfunctions:OPENSSL_internal:DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH

Figure 13: MobSF detects the propagation URL used by the sample: hxxp://tiny.cc/COVID-VACCINE.

Figure 14: MobSF live API monitoring displays the AES key of Android/Oji. The same can be achieved with Dexcalibur
and hooking SecretKeySpec.

06-0411:07:58.262 19083 19083 WSystem.err:

atcom.oncamra.sevendra.ghaluuu.c(ghaluuu.java:240)

House is not the best choice for malware reconnaissance, but its monitoring section is helpful for the sample. For
example, monitoring the IPC section clearly shows the message copied for WhatsApp – something the other tools won’t
show easily.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

8 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 15: The Android/Oji malware sends the message to WhatsApp as an extra intent. This is detected by House.

Android/Flubot

Android/Flubot is described in depth in [8]. Its main features are:

• It is packed. The four tools detect this. Perhaps with Quark it is less clear, just a strong hint from high usage of
reflection.

Figure 16: Android/Flubot is packed. Quark does not have an explicit rule ‘is packed’, however it says 19 of its rules use
reflection. This is a strong hint that dynamic class loading occurs.

• The packer hides its icon after it is launched. Quark is the only tool to detect this, MobSF does not have the feature,
and Dexcalibur and House are not designed for this.

• It communicates with a CnC. The communication is encrypted with a hard-coded public RSA key and domain names
are generated via a DGA algorithm. House’s HTTP monitoring feature is really interesting.

Figure 17: House shows that Android/Flubot sends a request to Cloudflare DNS to check the location of the CnC (line 2),
and then communicates with the CnC (line1) at 188.54.64.150.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

9VIRUS BULLETIN CONFERENCE OCTOBER 2021

The payload uses string obfuscation (from [30]), and abuses Accessibility services to perform overlay attacks, disable
Play Protect, automatically send SMSs, etc. All these features are difficult to detect in an automated way as they are
executed from dynamically loaded code.

Android/Alien

And roid/Alien is a RAT, described at [12]. It uses the same (or similar) packer as Flubot, and implements numerous
functionalities: grab lock pattern, grab Google Authenticator code, grab Gmail password, forward calls, list files in a folder,
list installed apps, harvest SMSs, send spam SMS to contacts, record audio, etc. As in other cases, the analysis is impacted
by the fact third-party code is not detected and the sample is packed.

Figure 18: MobSF displays third-party URLs. We would prefer to see the CnC URL or IP address.

On top of dynamically loading a payload, the sample also has the ability to download an external APK (it calls this a
‘dynamic module’) and stores it in ring0.apk.

Figure 19: Screenshot from Dexcalibur where Android/Alien tries to store the dynamic module.

With House, the monitoring tab shows the remote server in the ‘HTTP’ section, the creation of the file ring0.apk in the
‘FILEIO’ section, and the ‘Shared Preferences’ section of House shows the configuration of the malware live.

Figure 20: In this screenshot, House has been configured to monitor Shared Preferences. It shows that Android/Alien stores
the URL hxxp://servicesc.xyz in its parameter QE.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

10 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Android/Sandr

Androi d/Sandr, a.k.a. SandroRAT or DroidJack, is an Android RAT which appeared in 2014, but it is still in the wild.
Like other RATs, it features SMS interception, audio recording of phone calls, screen and video capture, etc. This
particular sample communicates with a CnC 062e1a582086.ngrok.io on port 1028, using the Java Kryonet socket
library.

Quark detects many features of the sample:

• Connection to CnC via a Kryonet socket, via [31].

• Ability to download and install an update APK (see ‘Install other APKs from file’ in the screenshot below).

• Several rules show manipulation of SMS and call logs (e.g. ‘Read sensitive data(SMS, CALLLOG, etc.)’, ‘Query data
from URI(SMS, CALLLOGS)’.

• Audio / video recording via rules named ‘Save recorded audio/video to a file’, ‘Start recording’.

• Sending SMS. Quark successfully detects this. We appreciate that Quark rules are not limited to sendTextMessage
but also sendMultipartTextMessage (used in the sample).

Figure 21: Screenshot of crimes detected by Quark on Android/Sandr (image has been cut – more rules below).

A ndroid/MoqHao

The s ample of Android/MoqHao we analyse is packed using a native library, targets banks and offers several backdoor
commands (send SMS, enable/disable Wi-Fi, collect device contacts, force phone back to home screen, etc.) [32].

The sample turns out to be difficult to analyse because its library is compiled for ARM platforms. In theory, this should not
be an issue: ARM is common for Android, and there are ARM emulators. In practice, those emulators are desperately slow.
We try to work around this issue using [33], but this uses the very recent Android 11 on which the sample does not run
correctly. So, dynamic analysis does not work. Static analysis isn’t very successful either, apart for Quark on the payload
DEX. In the end, this sample is best reversed with a good disassembler.

Figure 22: MobSF finds that Android/MoqHao malware is very ‘secure’ (100/100)! Obviously, the scoring is not adapted to
malware analysis.

CONCLUSION

This paper does not aim at formally comparing tools. However, after practical use over several malicious samples, some
pros and cons emerge. The appendix rates more precisely RE tasks.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

11VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 23: Good point of MobSF which detects a suspicious ‘DexClassLoader’ string in the native library. This is a strong
hint that the malware uses native packing. Unfortunately, there are often many strings in executables, so this can easily go

unnoticed.

User interface Dexcalibur House MobSF Quark

Easy to setup? 1 3 4 5

Clarity of features (i.e. ease of understanding
what things do)

4 2 3 5

Easy to customize for your RE? 4 3 3 5

How long does it take to process a sample? 3 4 2 5

Number of bugs 2 (many bugs
but mostly
minor)

1 (many bugs,
impenetrable!)

5 (a few bugs
of course)

5 (a few bugs
of course)

Reactivity to bug reports 3 0 3 5

Quality of error messages (e.g. cannot install
malware on emulator etc.)

1 0 3 4

Is it scriptable? How easily? 0 0 1 (Web API) 4

Table 2: Personal general evaluation of tools for Android malware reverse engineering. Scores range from 0 (very difficult/
impossible) to 5 (excellent/automated).

Tool Pros Cons

Dexcalibur Very easy to add new hooks Quite difficult to install

House Excellent live monitoring + Very buggy. Not sure it is maintained any longer?

MobSF Awesome integration of dynamic analysis
+ reasonably good static analysis and
beautiful report

Ergonomics of dynamic analysis need improvements: (1) logs
or hook messages appear in a narrow column which is hardly
readable, (2) it is not possible to filter specific APIs in the Live
Monitoring API, consequently it soon becomes unreadable, (3)
some options are not intuitive (no immediate idea what they do
e.g. ‘Capture String Comparison ’). As for static analysis, the
report is polluted with information not relevant to malware
analysis (security score, NIAP and other features indicating if
the malware has potential vulnerabilities)

Quark Quick, reliable and simple The results require close inspection to understand if the crime
is relevant or not

Table 3: Main pros and cons identified during malware analysis of samples.

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

12 VIRUS BULLETIN CONFERENCE OCTOBER 2021

I have found all four tools to be interesting for reverse engineering. I would personally recommend the following process
over any new sample:

1. Run Quark. It is designed to highlight malicious behaviours, and therefore particularly interesting in the early stages
of reverse engineering, when there is lots of code to parse and we do not know what to look at first. As its setup is
very easy and it processes samples very quickly, it is usually worth running over any sample. Parse Quark’s output
rapidly to get an overall impression, but don’t lose too much time at this step, because there will be false positives.

2. Run MobSF’s static analysis and inspect anything Quark highlighted. In particular, check out the Android API, URL
and Domains table. Open the sample in a disassembler and check if it is packed. Continue static analysis with the
disassembler as much as possible.

3. If static analysis is long and dynamic analysis would quicken it, the tool to use depends on what we want to do. If
we need to check what major Android APIs the sample calls, use MobSF’s ‘Live Monitor’ feature. If we would like
to monitor HTTP usage, use House’s monitor ‘HTTP’ tab. If we need to unpack, any tool (Dexcalibur, House,
MobSF) will work – and actually, this is so helpful! In my opinion, this feature alone makes the tools worth using.
Finally, if we want to hook specific methods, or select which ones to hook, use Dexcalibur.

REFERENCES

[1] Michel, G.-B. Dexcalibur GitHub repository. https://github.com/FrenchYeti/dexcalibur/. [Accessed 08 June 2021].

[2] Ke, H. House GitHub repository. https://github.com/nccgroup/house. [Accessed 08 June 2021].

[3] Frida. https://frida.re/.

[4] MobSF GitHub repository. https://github.com/MobSF/Mobile-Security-Framework-MobSF. [Accessed 08 June
2021].

[5] Quark GitHub repository. https://github.com/quark-engine/quark-engine. [Accessed 08 June 2021].

[6] Frank, D.; Rochberger, L.; Rimmer, Y.; Dahan, A. EventBot: A New Mobile Banking Trojan is Born.
https://www.cybereason.com/blog/eventbot-a-new-mobile-banking-trojan-is-born.

[7] Babayeva K.; Garcia, S. Dissecting a RAT. Analysis of DroidJack v4.4 RAT network traffic.
https://www.stratosphereips.org/blog/2021/1/22/analysis-of-droidjack-v44-rat-network-traffic.

[8] Prodaft. FluBot Malware Analysis Report, Mar-2021. https://raw.githubusercontent.com/prodaf t/malwareioc/
master/FluBot/FluBot.pdf.

[9] Apvrille, A. Android/Oji worm fake COVID-19 vaccine registration campaign. https://cryptax.medium.com/
android-oji-worm-fake-covid-19-vaccine-registration-campaign-80b6f9c79abe.

[10] Apvrille, A. A native packer for Android/MoqHao. https://cryptax.medium.com/a-native-packer-for-android-
moqhao-6362a8412fe1.

[11] Apvrille, A. Blind try of MobSF over a suspicious Android sample. https://cryptax.medium.com/blind-try-of-
mobsf-over-a-suspicious-android-sample-7fe7368a4804.

[12] Threat Fabric. Alien - the story of Cerberus’ demise. https://www.threatfabric.com/blogs/alien_the_story_of_
cerberus_demise.html#the-alien-malware.

[13] Apvrille A.; R. Nigam, R. Obfuscation in Android malware and how to fight back. In 8th International CARO
Workshop, 2014.

[14] quark-engine / quark-rules. https://github.com/quark-engine/quark-rules/blob/master/00149.json.

[15] Project: InMemoryDexClassLoader dump. https://codeshare.frida.re/@cryptax/inmemorydexclassloader-dump/.

[16] Can, A. B. N Ways to Unpack Mobile Malware. https://pentest.blog/n-ways-to-unpack-mobile-malware.

[17] Durando, D. How-to Guide: Defeating an Android Packer with FRIDA. https://www.fortinet.com/blog/threat-
research/defeating-an-android-packer-with-frida.

[18] Novella, E. fridroid-unpacker. https://github.com/enovella/fridroid-unpacker. [Accessed 08 June 2021].

[19] He, Z.; Ye, G.; Yuan, L.; Tang, Z.; Wang, X.; Ren, J.; Wang, W.; Yang, J.; Fang, D.; Wang, Z. Exploiting Binary-
level CodeVirtualization to Protect AndroidApplications Against App Repackaging. In IEEE Access 7, 2019.

[20] Apvrille, A. Hooking methods inside dynamically loaded classes. https://github.com/cryptax/misc-code/blob/
master/frida_hooks/dyndecrypt.tmpl.js.

[21] Alexander-Brown, S. Rootbeer GitHub repository. https://github.com/scottyab/rootbeer. [Accessed 08 June 2021].

[22] Android Anti-Reversing Defenses. https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-
guide/0x05j-testing-resiliency-against-reverse-engineering.

https://github.com/FrenchYeti/dexcalibur/
https://github.com/nccgroup/house
https://frida.re/
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/quark-engine/quark-engine
https://www.cybereason.com/blog/eventbot-a-new-mobile-banking-trojan-is-born
https://www.stratosphereips.org/blog/2021/1/22/analysis-of-droidjack-v44-rat-network-traffic
https://raw.githubusercontent.com/prodaf t/malwareioc/master/FluBot/FluBot.pdf
https://cryptax.medium.com/android-oji-worm-fake-covid-19-vaccine-registration-campaign-80b6f9c79abe
https://cryptax.medium.com/a-native-packer-for-android-moqhao-6362a8412fe1
https://cryptax.medium.com/blind-try-of-mobsf-over-a-suspicious-android-sample-7fe7368a4804
https://www.threatfabric.com/blogs/alien_the_story_of_cerberus_demise.html#the-alien-malware
https://github.com/quark-engine/quark-rules/blob/master/00149.json
https://codeshare.frida.re/@cryptax/inmemorydexclassloader-dump/
https://pentest.blog/n-ways-to-unpack-mobile-malware
https://www.fortinet.com/blog/threat-research/defeating-an-android-packer-with-frida
https://github.com/enovella/fridroid-unpacker
https://github.com/cryptax/misc-code/blob/master/frida_hooks/dyndecrypt.tmpl.js
https://github.com/scottyab/rootbeer
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05j-testing-resiliency-against-reverse-engineering

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

13VIRUS BULLETIN CONFERENCE OCTOBER 2021

[23] Cong, F. Anti Frida tricks. https://github.com/feicong/strong-frida/blob/main/docs/README.md. [Accessed 08
June 2021].

[24] Riva, N. Anti-instrumentation techniques: I know you’re there, Frida! https://crackinglandia.wordpress.com/
2015/11/10/anti-instrumentation-techniques-i-know-youre-there-frida.

[25] rednaga / APKiD. https://github.com/rednaga/APKiD.

[26] Ho, F. https://github.com/Felixho19/CuckooWithFrida/blob/master/hook_scripts/init/scripts/android_device/
android_os_Debug.js. [Accessed 08 June 2021].

[27] Project: anti-frida-bypass. https://codeshare.frida.re/@enovella/anti-frida-bypass/.

[28] Thomas, R. r2-pay: anti-debug, anti-root & anti-frida. https://www.romainthomas.fr/post/20-09-r2con-
obfuscatedwhitebox-part1/. [Accessed 08 June 2021].

[29] cryptax / droidlysis. https://github.com/cryptax/droidlysis.

[30] MichaelRocks / paranoid. https://github.com/MichaelRocks/paranoid.

[31] quark-engine / quark-rules. https://github.com/quark-engine/quark-rules/blob/master/00154.json.

[32] Trend Micro. XLoader Android Spyware and Banking Trojan Distributed via DNS Spoofing.
https://www.trendmicro.com/en_hk/research/18/d/xloader-android-spyware-and-banking-trojandistributed-via-dns-
spoofing.html.

[33] Hazard, M. Run ARM apps on the Android emulator. https://android-developers.googleblog.com/2020/03/
run-arm-apps-onandroid-emulator.html.

 APPENDIX

General RE features Dexcalibur House MobSF Quark

Quick overview of malicious features 0 0 3 4

Detect permissions (except dynamically requested
permissions)

0 0 5 5

Find where a malicious feature is implemented 0 0 5 4

Find cross references 0 0 1 (code search) 0

Rename methods / variables etc. 0 0 0 0

Debug a method (step, next, go) 0 0 0 0

Rule out third-party code in analysis 0 0 0 0

Detect sample is packed 5 4 (works fine
but feature is
not easy to
find)

5 4 (crime
labels may
not be clear)

Detect use of class loaders from native library 1 (hook at
native level)

1 (hook at
native level)

2 (from native
library strings
or hook at
native level)

0

Retrieve the full path of DEX loaded with DexClassLoader 5 5 5 0

Retrieve the full path of DEX when using other class
loaders

4 4 3 (add hook
manually)

0

Dump DEX from memory 1 (add
custom hook)

1 (add
custom hook)

1 (add custom
hook)

0

Monitor custom API with input and output 3 (in several
cases, you
have to
customize
the hook)

2 (only for
some
functions, or
write your
own hook)

4 (output not
shown)

0

Display encryption key 3 (add hook) 3 (add hook) 4 (already
integrated)

0

Table 4: Personal rating of tools for specific reverse engineering tasks. 0 = impossible, 1=difficult detection, 4=easy,
5=automatic or very easy.

https://github.com/feicong/strong-frida/blob/main/docs/README.md
https://crackinglandia.wordpress.com/2015/11/10/anti-instrumentation-techniques-i-know-youre-there-frida
https://github.com/rednaga/APKiD
https://github.com/Felixho19/CuckooWithFrida/blob/master/hook_scripts/init/scripts/android_device/android_os_Debug.js
https://codeshare.frida.re/@enovella/anti-frida-bypass/
https://www.romainthomas.fr/post/20-09-r2con-obfuscatedwhitebox-part1/
https://github.com/cryptax/droidlysis
https://github.com/MichaelRocks/paranoid
https://github.com/quark-engine/quark-rules/blob/master/00154.json
https://www.trendmicro.com/en_hk/research/18/d/xloader-android-spyware-and-banking-trojandistributed-via-dns-spoofing.html
https://android-developers.googleblog.com/2020/03/run-arm-apps-onandroid-emulator.html

REVERSE ANDROID MALWARE LIKE A JEDI MASTER APVRILLE

14 VIRUS BULLETIN CONFERENCE OCTOBER 2021

General RE features Dexcalibur House MobSF Quark

Display deobfuscated strings when standard crypto is
used

3 (add hook) 3 (add hook) 5 (use live
monitoring)

0

Display deobfuscated strings when custom obfuscation is
used

3 (add hook) 3 (add hook) 3 (add hook) 0

Anti-debug trick based on isDebuggerConnected 3 3 4 2

Anti-root tricks based on system properties, or well-
known rooting apps, or typical root binaries

3 3 4 1

Anti-emulation tricks based on checking the output value
for a given Android API

3 3 3 2

Anti-Frida tricks based on stack trace, or elapsed time 2 2 2 1

Other advanced anti-reverse tricks based on integrity, call
stack, symbols of the system

1 1 1 0

Detect sending SMS 2 (need to
add a hook)

1 (adding
hooks for the
Android API
is not
intuitive)

4 4

Spot malicious remote IP address statically 0 0 2 0

Monitor communication with malicious remote server 3 4 3 0

Detect abuse of accessibility services, click jacking etc. 1 1 2 3

Detect malicious implementations in native code 1 1 2
(automatically
performs some
checks on
binaries)

0

Table 4 (contd): Personal rating of tools for specific reverse engineering tasks. 0 = impossible, 1=difficult detection,
4=easy, 5=automatic or very easy.

