
MITIGATING EXPLOITS USING APPLE’S 
ENDPOINT SECURITY
Csaba Fitzl
Offensive Security, Hungary

fitzl.csaba@gmail.com

7 - 8 October, 2021 / vblocalhost.com

www.virusbulletin.com



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

2 VIRUS BULLETIN CONFERENCE OCTOBER 2021

ABSTRACT

I have spent the last two years searching for logic vulnerabilities in both Apple’s macOS operating system and third-party 
apps running on macOS. One of the common ways to gain more privileges is by injecting code into another process that 
possesses various entitlements, which grants various rights to the process. Although Apple’s own processes are well 
protected the same is not true for third-party apps. This has opened up the possibilities for plenty of privacy (TCC) related 
bypasses and privilege escalation to root through XPC services. 

Another common logic vulnerability is to attack the system and applications through symbolic or hard links by redirecting 
the file operation to a location of the attacker’s choice.

When Apple introduced the Endpoint Security framework, I decided to write an application to protect against such logic 
attacks, and to learn the framework myself. The application, called Shield [1], is free and open source [2].

In this paper I will introduce the basic concepts behind process injection and file link attacks. I will talk about how they 
work, and what they make possible. Then I will discuss Apple’s Endpoint Security framework, how it works, and how it can 
be used. 

Next, I will discuss the development of the Shield application, how the mitigations are implemented, and how it works in 
the background. I will also describe my experiences of getting the Endpoint Security entitlement from Apple.

PROCESS INJECTION ATTACKS ON MACOS

Process injection [3] is a common attack technique on all operating systems. On Windows it’s mainly used for stealth and to 
hide code in a different process, and it’s also generally allowed between processes running on the same privilege (ring) 
level. This means that a user-mode process can typically inject code into another user-mode process.

On macOS the situation is entirely different, and there is a reason for that. On macOS, processes’ code signatures control 
access to various resources through entitlements. Entitlements are strings that typically take the form of reverse DNS 
notation, and are stored inside the code signature of the application. All privacy-related access is tied to various 
entitlements. Apple itself has over 200 private entitlements that granularly control what a process can access in the system, 
and these give Apple binaries unique rights. For example, the kernelmanagerd daemon, which is used to load and unload 
kernel extensions, has the following entitlements:

Executable=/usr/libexec/kernelmanagerd

...

<dict>

 <key>com.apple.private.KextAudit.user-access</key>

 <true/>

 <key>com.apple.private.allow-bless</key>

 <true/>

 <key>com.apple.private.applecredentialmanager.allow</key>

 <true/>

 <key>com.apple.private.iokit.nvram-panicmedic</key>

 <true/>

 <key>com.apple.private.iokit.system-nvram-allow</key>

 <true/>

 <key>com.apple.private.kernel.get-kext-info</key>

 <true/>

 <key>com.apple.private.security.bootpolicy</key>

 <true/>

 <key>com.apple.private.security.iocatalog-management</key>

 <true/>

 <key>com.apple.private.security.kext-collection-management</key>

 <true/>

 <key>com.apple.private.security.kext-management</key>

 <true/>

 <key>com.apple.private.security.storage.SystemExtensionManagement</key>

 <true/>

 <key>com.apple.private.security.syspolicy.kext-management</key>

 <true/>

 <key>com.apple.private.spawn-driver</key>

 <true/>

 <key>com.apple.private.storagekitd.statuschange</key>



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

3VIRUS BULLETIN CONFERENCE OCTOBER 2021

 <true/>

 <key>com.apple.private.system-extensions.extension-point</key>

 <true/>

 <key>com.apple.private.tcc.allow</key>

 <array>

  <string>kTCCServiceSystemPolicyAllFiles</string>

 </array>

 <key>com.apple.private.xpc.launchd.job-manager</key>

 <string>com.apple.kernelmanagerd</string>

 <key>com.apple.rootless.storage.KernelExtensionManagement</key>

 <true/>

 <key>com.apple.rootless.storage.KernelExtensionStaging</key>

 <true/>

 <key>com.apple.rootless.volume.Preboot</key>

 <true/>

 <key>com.apple.rootless.volume.iSCPreboot</key>

 <true/>

</dict>

</plist>

The entitlement com.apple.private.security.kext-management gives the kernelmanagerd process the ability to 
load kernel extensions. The concept of code signatures and entitlements means that if we can run code in the context of 
another process, we get access to its entitlements and we will gain the same rights. Beyond entitlements, keychain access 
and secure XPC-based interprocess communications are tied to the processes’ code signatures. For example, in the case of 
XPC we can invoke the privileged XPC service on behalf of the client, which often results in local privilege escalation.

Again, if we can impersonate the application we will gain extended privileges. Because of this, process injection is locked 
down on macOS.

Apple binaries are protected by System Integrity Protection (SIP) and disallow all forms of code injection. Applications 
compiled with hardened runtime also enjoy the protection of SIP. However, there are still plenty of third-party applications 
that either don’t have hardened runtime enabled, or use entitlements which effectively disable code injection protection.

Next we will review the most common methods that can be used to inject code into another process on macOS.

Using the DYLD_INSERT_LIBRARIES environment variable

This technique is probably the most classic way of injecting code into another process. One can use the DYLD_INSERT_
LIBRARIES environment variable, specify a dylib in it, and that dylib will be loaded into the application before it even 
starts. I wrote about this in detail in [4] and [5]. 

For example, the following line will inject inject.dylib into the application test:

% DYLD_INSERT_LIBRARIES=inject.dylib ./test

This technique had some limitations even in the initial versions of OS X. For example, the injection wasn’t permitted on 
binaries that had the SUID bit set or those with a __RESTRICTED segment on the Mach-O file. Nowadays, SIP-protected 
binaries are all protected from this injection attack. However, there is a way to opt out of this protection: an application 
using the com.apple.security.cs.allow-dyld-environment-variables entitlement will allow this type of 
injection. If possible, developers should avoid using this entitlement.

Dylib hijacking and proxying

Dylib hijacking was discussed in detail by Patrick Wardle in 2015 [6]. The basic idea of this attack is that we plant a rogue 
dylib on the system, which will be loaded by the application.

If we hijack the dylib search order we call the attack ‘dylib hijacking’. In this case the application first tries to load the 
dylib from paths where the dylib is not found. If we plant our dylib in these locations our dylib will be loaded. If we swap 
an existing dylib, we call it dylib proxying. Generally speaking, we will re-export the functions of the original dylib in both 
cases, and proxy the original function calls, but in the second case we will need to swap an existing file.

This attack is prevented if the main executable is compiled with library validation. Library validation means that an 
application can only load shared libraries that have been signed with the same team ID or Apple. SIP will also enforce 
library validation. There are cases when developers need to support third-party libraries, such as plug-ins or drivers, and in 
those cases they can use the com.apple.security.cs.disable-library-validation entitlement, which will 
disable library validation. Having this entitlement will generically allow us to inject code into the app, thus it’s extremely 
dangerous. The use of this entitlement should be avoided.



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

4 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Injection through task ports

If we want to gain access to and control a given process or thread we need to gain access to its underlying Mach task’s 
‘task port’. A task is a unit defined by the Mach microkernel, which was originally developed by Carnegie Mellon 
University, and it is used in macOS as well. Since task ports allow unrestricted control over a process, once we have 
retrieved the task port, we can perform any action we would like on the process. This means we can read and write its 
memory, we can create threads, terminate it, etc. Effectively, we gain full control, which will allow us to inject our code 
into the target process.

Task port access is also restricted on any process that runs under SIP’s protection. Similarly to the other protections, this 
can be also disabled through an entitlement, which is com.apple.security.get-task-allow, and as such this 
entitlement is extremely dangerous. However, there are cases when it is required. For example, if we want to debug the 
application we develop, we need to add this entitlement in order to be able to attach a debugger to the process. Because of 
this, Xcode will automatically add this entitlement for any debug build. Unfortunately, there have been cases in the past 
where developers distributed their debug build instead of the release build, which resulted in a vulnerable application. 
These days, Apple’s notarization service will reject any application that has this entitlement. Fortunately, as notarization is 
almost mandatory nowadays, we have fewer and fewer applications with the wrong entitlements.

Electron applications

The last group of injections we need to mention are specifically related to Electron applications. Electron applications are 
infamous for their poor security, as has been discussed before by various researchers [7, 8]. The main concern is that 
Electron’s security model, which is based on Chromium’s, doesn’t deal with local attacks, thus it doesn’t try to prevent 
local process injection. This makes almost all of these apps vulnerable. This is a problem, as there are hundreds of these 
applications [9], including some very well known ones such as Discord, Slack, Microsoft Teams and WhatsApp to just name 
a few.

Attackers have multiple ways of injecting code into Electron apps. One is by setting the ELECTRON_RUN_AS_NODE 
environment variable to 1, which will cause the application start as a Node.js console, and custom JavaScript can be run in 
the context of the application. This allows for trivial code injection.

Another method is to start the Electron application with the debug option (--inspect) set, which enables a debugger to 
be attached, and thus for custom JavaScript code to be injected. This again makes code injection easy.

Attackers can use either the codesign utility or code signing related APIs to enumerate targets. Although the entitlements 
of Electron apps varies they often have access to the user’s microphone or camera. For example, Discord possesses the 
following entitlements:

<dict>
 <key>com.apple.security.cs.allow-unsigned-executable-memory</key>
 <true/>
 <key>com.apple.security.device.audio-input</key>
 <true/>
 <key>com.apple.security.device.camera</key>
 <true/>
</dict>

As this allows an attacker to bypass Apple’s privacy protection once injected into the application, it can be an attractive 
target for local exploitation.

Unfortunately, SIP can’t prevent these attacks.

Vulnerabilities

As we can see there are a wide variety of options to inject code into other processes on macOS. Luckily, SIP prevents most 
of these. There are cases, however, where hardened runtime is missing or insecure entitlements are used, which disable 
SIP’s protective umbrella. These can often lead to serious consequences. Here is a list of a few vulnerabilities that were 
possible due to process injection:

• CVE-2020-26893 – ClamXAV AntiVirus XPC Local Privilege Escalation

- By injecting our code into the ClamXAV AV client we could communicate with ClamXAV’s privilege helper tool, 
which allowed us to escalate our privileges to root.

• CVE-2020-29621 – coreaudiod TCC bypass

- By injecting our own plug-in into the coreaudiod process we gained access to the process’s entitlements, 
including com.apple.private.tcc.manager, which allowed us to fully control the system privacy settings 
and completely bypass TCC.



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

5VIRUS BULLETIN CONFERENCE OCTOBER 2021

• CVE-2020-25736 – Acronis True Image 2021 XPC Local Privilege Escalation

- By injecting our code into the Acronis True Image AV client we could communicate with Acronis True Image’s 
privilege helper tool, which allowed us to escalate our privileges to root.

• CVE-2020-24259 – Signal macOS TCC bypass

- By performing a dylib proxying attack we were able to gain access to Signal’s TCC permissions, which allowed us 
to access the microphone without any user prompt, effectively partially bypassing TCC.

• CVE-2020-14978 – F-Secure XPC business logic compromise

- By injecting our code into F-Secure AV client we could communicate with F-Secure’s privilege helper tool, which 
allowed us to control the otherwise protected AV.

This is just a small subset of the issues. Based on the list above we can see why process injection is generically forbidden 
on macOS, and if it happens it can easily lead to various vulnerabilities ranging from simple privacy bypasses to full 
privilege escalations.

Next we cover another group of logic attacks, which utilizes file links.

FILE LINK ATTACKS ON MACOS

File link attacks are another big group of logic attacks on macOS. I discussed this in depth in [10].

Generally, file link attacks work by someone placing a symbolic or hard link in a specific, user-controllable location, which 
will then be followed by a process running with higher privileges, typically root. Depending on what the process does, this 
can lead to various scenarios:

• Arbitrary file overwrite

• Arbitrary file deletion

• Full local privilege escalation

As we only redirect the file operation to a different location, and we don’t have direct control over the target file, we usually 
need to find a way to indirectly control the target file. This is not always possible. 

Vulnerabilities

Because privileged processes often work on unprivileged locations, we can exploit these scenarios. The following is a 
list of a few vulnerabilities, which were all related to file link attacks:

• CVE-2020-9900 – Crash Reporter Local Privilege Escalation

- This vulnerability allowed an attacker to copy a script into the periodic scripts folder, which was later executed 
as root.

• CVE-2020-3855 – macOS DiagnosticMessages arbitrary file overwrite

- Because DiagnosticMessages was writing to log files under user-controllable locations as root, it allowed 
someone to overwrite arbitrary files.

• CVE-2020-3762 – Adobe installer Local Privilege Escalation

- Because the Adobe installer was incorrectly handling files in the /tmp/ directory, it allowed an attacker to 
escalate privileges to root by modifying files, which were later moved to the Library/LaunchDaemons 
directory.

• CVE-2021-1786 – Crash Reporter arbitrary file deletion

- This vulnerability allowed someone to delete arbitrary files as root.

As we can see, placing simple file links can easily lead to serious issues.

Next we will discuss the Mandatory Access Control Framework, which makes the Endpoint Security framework really 
powerful.

MANDATORY ACCESS CONTROL FRAMEWORK – MACF
The Mandatory Access Control Framework has its origin in TrustedBSD and has been adopted by Apple. It was introduced 
in Mac OS X 10.5 (Leopard). It’s a policy framework which provides the ability to extend the kernel with various 
policy-based modules. Its high level architecture is shown in Figure 1.



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

6 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 1: High-level architecture of the Mandatory Access Control Framework.

The kernel implements MAC policy hooks in various system calls or Mach traps (Mach system calls), which at the time of 
this writing means over 200 possible hooks. Policy modules come in the form of a kernel extension (KEXT), and when 
they are installed, they register their name and the list of supported hooks.

When a system call happens, the kernel iterates through all the MAC policy modules, and if one implements the hook, the 
kernel will make a callout. Policy modules can make a decision as to whether an action is allowed or not for the given caller 
from user space.

Due to the large number of possible hooks, the framework is extremely powerful, and Apple itself uses it in security-related 
kernel extensions, like AppleMobileFileIntegrity, Sandbox, EndpointSecurity and Quarantine. These modules hook various 
numbers of functions, with Sandbox containing the most interception points.

Unfortunately, third-party MAC drivers were never officially supported by Apple. Although the mac.h header was part of 
the kernel development kit (KDK), it was removed as of macOS 10.12. Although the header is still available through the 
XNU source codes, and developers can implement MAC policy modules, it is not officially supported.

Let’s take a brief look at how MAC policy hooks are implemented. Below we have a snippet from the snapshot_mount
system call:

#if CONFIG_MACF
 error = mac_mount_check_snapshot_mount(ctx, rvp, vp, &dirndp->ni_cnd, snapndp->ni_cnd.cn_
nameptr,
  mp->mnt_vfsstat.f_fstypename);

if (error) {
  goto out2;
 }
#endif

The system call has a callout to the MAC framework through the function mac_mount_check_snapshot_mount. The 
MAC callouts are typically named as mac_*. Let’s follow this function, its source code is shown below:

mac_mount_check_snapshot_mount(vfs_context_t ctx, struct vnode *rvp, struct vnode *vp, struct
componentname *cnp,

const char *name, const char *vfc_name)
{
 kauth_cred_t cred;

int error;

#if SECURITY_MAC_CHECK_ENFORCE
/* 21167099 - only check if we allow write */



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

7VIRUS BULLETIN CONFERENCE OCTOBER 2021

 if (!mac_vnode_enforce) {
  return 0;
 }
#endif
 cred = vfs_context_ucred(ctx);
 if (!mac_cred_check_enforce(cred)) {
  return 0;
 }
 VFS_KERNEL_DEBUG_START1(92, vp);
 MAC_CHECK(mount_check_snapshot_mount, cred, rvp, vp, cnp, name, vfc_name);
 VFS_KERNEL_DEBUG_END1(92, vp);
 return error;

}

mac_mount_check_snapshot_mount will perform a couple of checks and make a call to MAC_CHECK, which is a C 
macro. This is where the actual MAC policy modules will be called.

#define MAC_CHECK(check, args...) do {                                  \
 struct mac_policy_conf *mpc;                                    \
 u_int i;                                                        \
                                                                        \
 error = 0;                                                      \
 for (i = 0; i < mac_policy_list.staticmax; i++) {               \
         mpc = mac_policy_list.entries[i].mpc;                   \
         if (mpc == NULL)                                        \
                 continue;                                       \
                                                                        \
         if (mpc->mpc_ops->mpo_ ## check != NULL)                \
                 error = mac_error_select(                       \
                     mpc->mpc_ops->mpo_ ## check (args),         \
                     error);                                     \
 }                                                               \
 if (mac_policy_list_conditional_busy() != 0) {                  \
         for (; i <= mac_policy_list.maxindex; i++) {            \
                 mpc = mac_policy_list.entries[i].mpc;           \
                 if (mpc == NULL)                                \
                         continue;                               \
                                                                        \
                 if (mpc->mpc_ops->mpo_ ## check != NULL)        \
                         error = mac_error_select(               \
                             mpc->mpc_ops->mpo_ ## check (args), \
                             error);                             \
         }                                                       \
         mac_policy_list_unbusy();                               \
 }                                                               \
} while (0)

The MAC_CHECK macro will iterate over all MACF policy extensions, and call the policy module’s function if it implements 
it. There is a callout to the mac_error_select function, which will select the overall return value based on all the 
responses from all modules. If any module denies the action, the end result will be denied.

The actual policy hooks are named as mpo_*, and we can find below the ones responsible for snapshot mounting:

typedef int mpo_mount_check_snapshot_mount_t(
 kauth_cred_t cred,
 struct vnode *rvp,
 struct vnode *vp,
 struct componentname *cnp,
 const char *name,
 const char *vfc_name
 );

Overall, MAC is an extremely powerful framework to control security on a very granular basis. Next we will discuss the 
Endpoint Security framework.



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

8 VIRUS BULLETIN CONFERENCE OCTOBER 2021

THE ENDPOINT SECURITY FRAMEWORK
Apple introduced the Endpoint Security framework [11] in macOS Catalina (10.15) to provide security software with a 
user-mode API to protect against cyber attacks. At the same time, Apple started to deprecate various kernel APIs to force 
vendors out of the kernel space and to use the new API instead.

The Endpoint Security framework has been discussed in detail by Scott Knight in [12] and at the Objective by the Sea
conference [13]. Here I will just provide a quick summary, for further details please refer to Scott’s work.

The architecture of the framework can be illustrated as follows (made by Scott Knight).

Figure 2: Framework architecture.

At the very bottom we have the EndpointSecurity.kext kernel extension. It integrates with the MAC framework and 
audit to accomplish all of its capabilities (the kauth framework integration was discontinued in Big Sur). At the time of this 
writing the Endpoint Security MAC policy module implements around 60 different MAC hooks. It is shown in Figure 3.

In user mode we have the libEndppointSecurity.dylib, which provides the C API for endpoint security clients. This 
is what we use when we create the actual ES client, and respond to ES events.

The endpointsecurityd daemon is responsible for loading the system extensions (SEXT) using launchd. 

sysextd is responsible for validating the system extensions and if the code signature is valid, then it copies them to 
/Library/SystemExtensions/. This daemon will instruct endpointsecurityd to load the extension.

Finally, we have the SystemExtension.framework, which we can use from our application to activate or deactivate our 
system extension. Through this framework we can essentially call sysextd to initiate the load of the extension.

The systemextensionsctl command line utility provides basic control of the system extensions. We can list, reset and 
uninstall extensions using this tool.

The Endpoint Security framework supports various events, and it keeps increasing. These events are sent to our user-mode 
system extension, which allows our ES client to react to them, either passively through notification, or actively through 
authorization.



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

9VIRUS BULLETIN CONFERENCE OCTOBER 2021

Although the ES kernel extension is much more than a MAC policy module, on a very high level it extends the MAC hooks 
to user mode. For example, the following ES user-mode events are related to the following MAC hooks in kernel space.

ES user-mode event MAC hook

ES_EVENT_TYPE_NOTIFY_CHROOT es_vnode_check_chroot

ES_EVENT_TYPE_NOTIFY_MOUNT es_mount_check_mount_late

ES_EVENT_TYPE_NOTIFY_MMAP es_file_check_mmap

ES_EVENT_TYPE_AUTH_GET_TASK es_proc_check_get_task

There is much more happening there, but essentially we got the MAC framework extended into user mode, which is very 
powerful. Considering that MAC was never officially supported by Apple for third-party kernel drivers, this is a huge thing.

The main drawback of the framework is that system extensions run in user mode, and have no possibility to inspect the 
kernel, thus if an adversary finds a way to compromise the kernel and install a kernel rootkit, we won’t be able to detect it.

Next I will discuss how we can use develop our own Endpoint Security application and how we can use it to mitigate logic 
exploits.

EXPLOIT MITIGATION, SHIELD.APP

Getting entitled

If we want to develop an Endpoint Security system extension we need to request access to the com.apple.developer.
endpoint-security.client entitlement, which is not available by default to all developers. Unfortunately, we depend 
on Apple’s goodwill to get access to this entitlement.

I went through a very disappointing process when I requested access to the entitlement.

Figure 3: The Endpoint Security MAC policy module implements around 60 different MAC hooks.



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

10 VIRUS BULLETIN CONFERENCE OCTOBER 2021

I submitted my initial request in March 2020. In a month, Apple approved the use of the developer version of the 
entitlement, which allows developers to install the system extension on their own Macs without the need for turning off SIP. 
This was a great step forward and meant I could start developing the application. In the meantime, I asked Apple to grant 
me access to the production version of the entitlement, which would allow me to distribute the application to users.

This is where it became an annoying and frustrating experience. Apple didn’t reply to me apart from sending me one 
question in July 2020. It felt as if all of my emails were going into a black hole and no one was seeing them. I got so 
demotivated that I stopped developing my app for months, as I didn’t see the point in writing it if no one would be able to 
use it except me.

Eventually, in January 2021, Apple granted me the entitlement. I don’t know what happened or why I needed to wait so 
long. Luckily I don’t do development for a living, and wasn’t relying on this as a source of income – however for someone 
who does, this would be an even worse experience. Apple needs to improve its developer relations.

Writing an Endpoint Security client

As a start, I heavily relied on Patrick Wardle’s open-source Objective-See [14] tools, especially the ProcessMonitor client, 
and I even used some classes from that application. I also checked Stephen Davis’s Crescendo project [15]. Although it’s 
written in Swift, I learned a lot from it as well. I’m really thankful for these open-source projects, and I can’t emphasize 
enough how much I learned from them.

Let’s review the very basics. The code snippet below shows the major items we need to implement when we create an ES 
client:

es_client_t* endpointClient = nil;

es_event_type_t events[] = {ES_EVENT_TYPE_NOTIFY_EXEC, ...};

es_new_client(&endpointClient, ^(es_client_t *client, const es_message_t *message){
  //callback
  switch (message->event_type) {

  case ES_EVENT_TYPE_NOTIFY_EXEC:
    //do stuff
 });

es_subscribe(endpointClient, events, sizeof(events)/sizeof(events[0]))

First, we need to create a variable which will hold a reference to our ES client. It has a type of es_client_t and the 
variable is endpointClient in this example. Next, we create an array of es_event_type_t, where we define the 
various event types in which we are interested. A list of supported events can be found in Apple Developer 
Documentation [16].

Next, we create a new client using the es_new_client function, passing two arguments. The first is our 
endpointClient variable, while the second is a C block, which is essentially a function that will be called when an event 
occurs. This is where we can add our logic of what to do in the case of an event fire.

Finally, we need to call es_subscribe, where we can subscribe our ES client to our events of interest.

Patrick Wardle wrote a very detailed guide about how to write an Endpoint Security system extension, which can be found 
at [17] and [18].

Next I will discuss the logic behind the exploit mitigation.

The application’s logic

Shield.app handles various events, and in the following section I will review each of them; what are they and how the 
application treats them. The app supports both monitoring and blocking mode, thus it’s subscribed to authorization events 
where possible.

ES_EVENT_TYPE_AUTH_EXEC

This event fires upon new process execution. To prevent some of the code injection it will verify two things. First, it will 
check if any of the Electron application debug arguments are used. They are:

• --inspect

• --inspect-brk

• --remote-debugging-port



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

11VIRUS BULLETIN CONFERENCE OCTOBER 2021

Additionally, it will verify if any environment variable that can be used for code injection is used when the process is 
launched. The ones it looks for are:

• DYLD_INSERT_LIBRARIES

• CFNETWORK_LIBRARY_PATH

• RAWCAMERA_BUNDLE_PATH

• ELECTRON_RUN_AS_NODE

If any of the above are found it will throw an alert or block the execution, depending on the settings.

ES_EVENT_TYPE_AUTH_GET_TASK

This event is triggered when an application tries to gain access to another application’s task port. This action is simply 
denied or creates an alert without any further checks.

ES_EVENT_TYPE_AUTH_MMAP

This event is fired when a file is mapped to memory. I try to use this event to catch dylib hijacking by cross-checking the 
process’s signature with the dylib being loaded. It tries to enforce library validation for dylib files. True library validation is 
done in-memory, mostly by AMFI. Unfortunately we can’t perform the same from our ES client, and we have to rely on 
slower methods.

For the code signature verification I have to read the dylib from disk, which means lot of disk I/O, and thus it’s a slower 
process, especially for larger applications like Xcode. I try to do caching here, but it can still be slow. Also, frameworks and 
other bundles are not monitored.

The following code snippet shows the requirement string I use for validation:

//set req string, teamid = of the process

//anchor apple = apple’s own binary - safe

//anchor apple generic and certificate leaf [subject.CN] = \"Apple Mac OS Application Signing\" - 
app store, assume safe

//anchor apple generic and certificate leaf[subject.OU] = \"%@\" - match dev teamid

NSString *requirementString = [NSString stringWithFormat:@"(anchor apple) or (anchor apple 
generic and certificate leaf [subject.CN] = \"Apple Mac OS Application Signing\") or (anchor 
apple generic and certificate leaf[subject.OU] = \"%@\")", process.teamID];

Apple binaries, Mac App Store binaries and matching Team ID are allowed to be mapped into the process.

ES_EVENT_TYPE_AUTH_LINK

This event happens when a hard link is created. The logic is shown below:

([file_uid intValue] != file.process.uid)  && !([file_uid intValue] > 0 && file.process.uid == 0)

The application checks whether the target location of the hard link is owned by the same user as the process creating the 
link, and if not it will check if the file has lower privileges than root and if the process runs as root. This tries to limit 
processes with lower privileges creating a link pointing to a location with higher privilege, because as we saw earlier it 
opens up the possibility for abuse.

ES_EVENT_TYPE_NOTIFY_CREATE

This event is triggered when a file is created. I use it to monitor for symbolic link creation. If the file is a symbolic link, the 
logic check is the same as in the case of hard links. Unfortunately, this event is only notification, as we can’t do 
authorization in this case. This is because in the case of symlinks the target is not known until the link is actually created by 
the system.

CONCLUSION

On macOS, process injection and file link attacks lead to easily exploitable vulnerabilities. As these are logic bugs, they are 
more reliable to exploit than memory corruption bugs. On the other hand, the attacks have an easily detectable pattern, 
which can be detected or prevented by monitoring operating system behaviour. The Endpoint Security framework provided 
by macOS is a perfect solution for this as it offers us plenty of events, which we can use to monitor such activity. The 
richness of ES comes from the fact that it’s closely integrated with the MAC framework in kernel space, which allows the 
inspection of over 200 system calls.



MITIGATING EXPLOITS USING APPLE’S ENDPOINT SECURITY  FITZL

12 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Although getting the entitlement for our application was a challenge, it’s a great tool for making defensive security 
products. Its main drawback is that it has no visibility of kernel space and, as such, kernel compromise and kernel rootkits 
can’t be detected. Hopefully Apple will strengthen this missing element in the future.

REFERENCES
[1] Fitzl, Cs. Shield - An app to protect against process injection on macOS. THEEVILBIT BLOG.

https://theevilbit.github.io/shield/.

[2] https://github.com/theevilbit/Shield.

[3] MITRE ATT&CK. Process Injection. https://attack.mitre.org/techniques/T1055/.

[4] Fitzl, Cs. DYLD_INSERT_LIBRARIES DYLIB injection in macOS / OSX. THEEVILBIT BLOG.
https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/.

[5] Fitzl, Cs. The Mysterious Syscall of AMFI. Offensive Security. https://www.offensive-security.com/offsec/
amfi-syscall/.

[6] Wardle, P. Dylib hijacking on OS X. Virus Bulletin. https://www.virusbulletin.com/virusbulletin/2015/03/dylib-
hijacking-os-x.

[7] Metnew, V. Why Electron apps can’t store your secrets confidentially: ‘ — inspect’ option. Medium.
https://medium.com/@metnew/why-electron-apps-cant-store-your-secrets-confidentially-inspect-option-
a49950d6d51f.

[8] Reguła, W. Abusing Electron apps to bypass macOS’ security controls. https://wojciechregula.blog/post/abusing-
electron-apps-to-bypass-macos-security-controls/.

[9] https://www.electronjs.org/apps.

[10] Fitzl, Cs. Exploiting directory permissions on macOS. THEEVILBIT BLOG. https://theevilbit.github.io/posts/
exploiting_directory_permissions_on_macos/.

[11] Apple. Endpoint Security. https://developer.apple.com/documentation/endpointsecurity.

[12] Knight, S. System Extension internals. https://knight.sc/reverse%20engineering/2019/08/24/system-extension-
internals.html.

[13] Knight, S. Endpoint Security and Insecurity. Objective by the Sea. https://objectivebythesea.com/v3/content.html.

[14] Objective-See. https://github.com/objective-see.

[15] Crescendo. https://github.com/SuprHackerSteve/Crescendo.

[16] Apple. es_event_type_t. https://developer.apple.com/documentation/endpointsecurity/es_event_type_t.

[17] Wardle, P. Writing a Process Monitor with Apple’s Endpoint Security Framework. Objective-See.
https://objective-see.com/blog/blog_0x47.html.

[18] Wardle, P. Writing a File Monitor with Apple’s Endpoint Security Framework. Objective-See.
https://objective-see.com/blog/blog_0x48.html.

https://theevilbit.github.io/shield/
https://github.com/theevilbit/Shield
https://attack.mitre.org/techniques/T1055/
https://theevilbit.github.io/posts/dyld_insert_libraries_dylib_injection_in_macos_osx_deep_dive/
https://www.offensive-security.com/offsec/amfi-syscall/
https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x
https://medium.com/@metnew/why-electron-apps-cant-store-your-secrets-confidentially-inspect-option-a49950d6d51f
https://wojciechregula.blog/post/abusing-electron-apps-to-bypass-macos-security-controls/
https://www.electronjs.org/apps
https://theevilbit.github.io/posts/exploiting_directory_permissions_on_macos/
https://developer.apple.com/documentation/endpointsecurity
https://knight.sc/reverse%20engineering/2019/08/24/system-extension-internals.html
https://objectivebythesea.com/v3/content.html
https://github.com/objective-see
https://github.com/SuprHackerSteve/Crescendo
https://developer.apple.com/documentation/endpointsecurity/es_event_type_t
https://objective-see.com/blog/blog_0x47.html
https://objective-see.com/blog/blog_0x48.html



