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INTRODUCTION

Go (also called Golang) is an open-source programming language that was designed by Google in 2007 and made available 
to the public in 2012. Over the years it has gained popularity among developers and, as usually happens, it has not only 
become popular with developers of legitimate software but has also attracted the attention of malware developers. The fact 
that Go supports cross compiling to run binaries on various operating systems makes it a tempting choice for malware 
developers. The possibility to compile the same code for all major platforms (Windows, Linux and MacOS) makes the 
attackers’ lives much easier, as they don’t have to develop and maintain a different codebase for each target environment.

Some special features of the Go programming language make investigating Go binaries difficult for reverse engineers. 
Reverse engineering tools (e.g. disassemblers) can do a great job in analysing binaries that are written in more popular 
languages (e.g. C, C++, .NET), but Go presents new challenges that makes the analysis more cumbersome. 

Go binaries are usually statically linked, which means that all the necessary libraries are included in the compiled binary. 
This results in large binaries. On the one hand this makes malware distribution more difficult for the attackers, but on the 
other hand some security products also have issues with handling such large files. The other advantage of statically linked 
binaries for the attackers is that the malware can run on the target systems without dependency issues.

As we see a continuous growth in malware written in Go, and we expect more families to emerge, we decided to dive 
deeper into the Go programming language and enhance our toolset to be more effective in investigating Go malware.

In the first section of this paper we provide a list of the recently discovered malware families written in Go and briefly 
introduce a few of them.

In the next sections we will discuss two of the difficulties that reverse engineers face during Go binary analysis and we will 
show our solutions for those.

Ghidra [1] is an open-source reverse engineering tool developed by the National Security Agency, which we frequently use 
for static malware analysis. It is possible to create custom scripts and plug-ins for Ghidra to provide specific functionalities 
that are needed by researchers. We used this feature of Ghidra and created custom scripts to aid our Go binary analysis.

In our research we tested Go until version 1.15 and used Ghidra versions 9.1 and 9.2.3.

The slides and other materials accompanying this paper are available in our GitHub repository [2].

GO MALWARE FAMILIES
In this section, we will briefly look at some of the prominent Go malware families. Table 1 shows a list of the recently 
discovered malware families written in Go, some of which we introduce in the following sections.

FritzFrog P2P botnet

This piece of malware was discovered by Guardicore [27]. FritzFrog has been active since January 2020. With its 
decentralized nature, there is no single command-and-control server, which makes it very unique as a Peer-2-Peer (P2P) 
botnet. Its worm executable is completely written in Golang, and its P2P implementation is proprietary.

FritzFrog is also considered a highly advanced piece of malware due to its multi-threaded, modular and fileless nature, 
which is very rare in a Mirai- and Gafgyt-variant dominated world.

Once a victim is successfully breached, it starts running the UPX-packed malware, which immediately erases itself. The 
malware process runs under the names ifconfig and nginx, to minimize suspicion.

Its main targets were governmental offices, educational institutions, medical centres, banks and numerous telecom 
companies as it tried to infiltrate via brute-force through the SSH protocol. 

Guardicore has also found FritzFrog to have some similarity to the Rakos botnet, as its function naming is similarly 
written, and its version numbers are very much alike. They have also developed a client program, which can send 
commands to the botnet by injecting its own node to participate in the P2P network.

The final goal of the malware is to deploy the malicious payload of a Monero cryptocurrency miner. FritzFrog has been 
observed with 20 different versions and variants since its inception.

HEH P2P botnet

Another botnet that made headlines as Go malware is the HEH botnet, discovered by 360 Netlab [16].

HEH’s initial vector of attack is the Telnet protocol, on port 23 or 2323, by brute-forcing its way through the login prompt. 
In the analysed variants, there were 171 usernames and 504 potential passwords stored in variables.

HEH uses a proprietary P2P protocol. HEH also has three clear distinct modules: a propagation module, an HTTP service 
module and a P2P module.
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According to 360 Netlab, this botnet is not yet mature, as some of the more essential functions, like the attack module, have 
not been implemented yet, and there are flaws in the implementation of the P2P module too.

HEH starts with a shell script, which pulls down the malicious binaries to different types of architectures and, surprisingly, 
executes all of them on the target. The malicious binary then kills a series of service processes based on listening port 
numbers.

HEH also starts an HTTP server on TCP port 80, and an initial dummy content will be placed onto the server, which gets 
overwritten by the P2P module once data is transferred from another node.

Currently, the botnet can execute shell commands, update the Peer List and exchange data, but as the attack module is not 
yet finished, analysts expect that there will be several iterations of HEH versions.

Family Reference

Kaiji Intezer - New Chinese Linux malware using Golang [3]

Zebrocy A Zebrocy Go Downloader [4]

eCh0riax Reverse Engineering Go Binaries with Ghidra - CUJO AI [5]

LiquorBot Intezer on Twitter [6]

WellMess Intezer on Twitter [7]

Smaug 
ransomware

Anomali Threat Research Releases First Public Analysis of Smaug Ransomware as a 
Service [8]

FritzFrog FritzFrog: A New Generation Of Peer-To-Peer Botnets - Guardicore [9]

Godlike12 Holy water: ongoing targeted water-holing attack in Asia [10]

IRCFlu muesli/ircflu [11]

IPStorm The InterPlanetary Storm: New Malware in Wild Using InterPlanetary File System’s 
(IPFS) p2p network [12]

Nephilim Vitali Kremez on Twitter [13]

EKANS EKANS Ransomware Targeting OT ICS Systems | FortiGuard Labs [14]

RobinHood Vitali Kremez on Twitter [15]

HEH https://blog.netlab.360.com/heh-an-iot-p2p-botnet/ [16]

Go Loader TA416 Goes to Ground and Returns with a Golang PlugX Malware Loader | 
Proofpoint US [17]

GOSH Intezer on Twitter [18]

Glupteba.Go Glupteba malware hides in plain sight [19]

New RAT There’s a New a Golang-written RAT in Town [20]

BlackRota https://blog.netlab.360.com/blackrota-an-obfuscated-backdoor-written-in-go-en/ [21]

Clipboard.Stealer https://analyze.intezer.com/files/
bd978ba0d723aea3106c6abc58cf71df5abe4d674d0d1fc38b37d4926d740738 [22]

CryptoStealer.Go Analyzing a new stealer written in Golang - Malwarebytes Labs [23]

Sysrv-hello Sysrv Botnet Expands and Gains Persistence | Official Juniper Networks Blogs [24]

Epsilon Red A new ransomware enters the fray: Epsilon Red [25]

aicm Intezer on Twitter [26]

Table 1: Go malware families.
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Sysrv botnet

In April, researchers at Juniper Threat Labs [24] reported that they had discovered a surge of activity from the botnet Sysrv. 
Traces of Sysrv botnet activity date back to December 2020.

Previously, Sysrv had separate worm and miner executables, but more recently Sysrv combines the two in one malicious 
binary. We also know that Sysrv once used two mining pools but now focuses only on the miner pool, ‘nanopool’.

Some developments have been observed in the loader script itself, which loads the malicious binary: the script now involves 
a procedure for adding an SSH key to the authorized_keys file on the target system to achieve persistence. Also, there is a 
Linux version of loader script, which is called ldr.sh, and a Windows one, called ldr.ps1.

The first variants of the malicious Sysrv payload exploited several different vulnerabilities, including the following:

• CVE-2020-16846 – Saltstack RCE

• CVE-2019-10758 – Mongo Express RCE

• CVE-2018-7600 – Drupal Ajax RCE

• CVE-2017-11610 – XML-RPC

• XXL-JOB Unauth RCE (without CVE)

• ThinkPHP RCE

Later versions of Sysrv started to include many other application-specific exploits, and we expect that they will keep 
incorporating more. These application-specific exploits are used to download and execute the first-stage loader script, ldr.sh 
or ldr.ps1.

Sysrv’s goal is to spread further and deploy a Monero cryptocurrency miner on the infected systems.

Epsilon Red ransomware

Researchers at Sophos [25] discovered a Golang-based ransomware that was attacking a US-based business. The loader for 
the ransomware payload is a PowerShell script. 

Analysts conclude that this new ransomware variant is quite a simple program, as it has no networking capabilities, and the 
encryption process is simple.

Epsilon Red will encrypt everything in its way, including all system files, possibly rendering the entire operating system 
unusable. Once the encryption is done, the ransomware appends the extension ‘.epsilonred’ to all encrypted files. The 
ransomware spawns a new child process for every folder it encrypts, which results in an unnecessarily long list of running 
ransomware processes.

From a binary perspective, the malicious sample was compiled with MinGW, and packed with a modified version of the 
UPX packer. We have also observed that the sample contains code from the open-source project Godirwalk: this tool will 
scan the entire system storage and compile a list of directory paths, which is then used for the encryption.

Analysts have found that the ransomware note dropped by Epsilon has some similarity to the one left behind by the REvil 
ransomware.

We have made the following observations and predictions during the analysis of the aforementioned botnets:

• Ransomware that is written in Golang will become more common

• P2P botnets are still popular and introduce new concepts and modules

• Botnets still trying to deploy cryptocurrency miners as a final step

Due to these, we have decided to dive deep into the Go language to understand it better and to enhance our ability to tackle 
Go malware. In the next two sections we introduce two features of Go, the difficulties reverse engineers face during Go 
malware analysis thanks to those, and our solutions.

LOST FUNCTION NAMES 
The first issue is not specific to Go binaries, but stripped binaries in general. Compiled executable files can contain debug 
symbols which make debugging and analysis easier. When reverse engineering a program that was compiled with 
debugging information included, analysts can see not only memory addresses but also the names of the routines and 
variables. However, in order to reduce the size, developers usually compile the files without this information, creating 
so-called stripped binaries. For malware authors another advantage of stripping binaries is that it makes reverse engineering 
more difficult. In this case analysts cannot rely on the function names to help them find their way around the code. For 
statically linked Go binaries, where all the necessary libraries are included, this can significantly slow down the analysis.

To illustrate this issue, we used simple ‘Hello World’ examples written in C(1) and Go(2) for comparison and compiled them 
to stripped binaries. Note the size difference between the two executables.
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Figure 1: Hello World examples written in C(1) and Go(2).

Ghidra’s function window lists all the defined functions within the binaries. In the non-stripped versions, function names 
are nicely visible and provide a great help for reverse engineers.

Figure 2: world_c(3) function list.

Figure 3: world_go(5) function list.
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For stripped binaries the function lists look the following:

Figure 4: world_c_strip(4) function list.

Figure 5: world_go_strip(6) function list.

These examples show nicely that even a simple ‘hello world’ Go binary is huge, with more than a thousand functions, and 
in the stripped version reverse engineers cannot rely on the function names to aid their analysis. 

Note: As a result of stripping, not only did the function names disappear, but instead of 1,790 defined functions only 1,138 
were recognized by Ghidra.

We were interested to find out whether there is a way to recover the function names within stripped binaries. First, using a 
simple string search we can check if the function names are still available within the binaries. For the C example we were 
looking for the function name ‘main’, while in the Go example it is ‘main.main’.

Figure 6: world_c(3) strings – ‘main’ was found.
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Figure 7: world_c_strip(4) strings – ‘main’ was not found.

Figure 8: world_go(5) strings – ‘main.main’ was found.

Figure 9: world_go_strip(6) strings – ‘main.main’ was found.

While in the stripped C binary(4) the function name cannot be found with the strings utility, in the Go version(6) ‘main.main’ 
is still available. This discovery gave us some hope that function name recovery might be possible in stripped Go binaries.

Loading the binary(6) to Ghidra and searching for the ‘main.main’ string will show the exact location. As can be seen in 
Figure 10, the function name string is located within the .gopclntab section. 

Figure 10: world_go_strip(6) main.main string in Ghidra.
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The pclntab structure has been available since Go version 1.2 and is nicely documented [28]. The structure starts with a 
magic value followed by information about the architecture. Then the function symbol table holds information about the 
functions within the binary. The address of the entry point of each function is followed by a function metadata table. 

Figure 11: The pclntab structure.

The function metadata table, among other important information, stores an offset to the function name. 

Figure 12: Function metadata table.

Using this information, it is possible to recover the function names. Our team created a script (go_func.py) for Ghidra to 
recover function names in stripped Go ELF files by executing the following steps:

• Locate pclntab structure

• Extract function addresses

• Find function name offsets

After executing our script not only will the function names be restored, but the previously unrecognized functions will be 
defined as well.

Figure 13: world_go_strip(6) function list after executing go_func.py.
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To see a real-world example let’s look at an eCh0raix rans  omware sample(9):

Figure 14: eCh0raix(9) function list.

Figure 15: eCh0raix(9) function list after executing go_func.py.

This example clearly shows how much help this simple function name recovery script can be during reverse engineering. 
Only by looking at the function names can analysts assume that they are dealing with a ransomware.

Note: In Windows Go binaries there is no specific section for the pclntab structure, rather researchers need to search 
explicitly for the fields of this structure (e.g. magic value, possible field values). For MacOS the _gopclntab section is 
available, and similarly .gopclntab in Linux binaries.

Challenges

If a function name string is not defined by Ghidra, then the function name recovery script will fail to rename that specific 
function, since it cannot find the function name string at the given location. To overcome this issue our script always checks 
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if a defined data type is located at the function name address and if it isn’t, then before renaming a function it tries to define 
a string data type at the given address.

In the example shown in Figures 16 and 17 the function name string ‘log.New’ is not defined in an eCh0raix ransomware 
sample(9), so the corresponding function cannot be renamed without string creation first.

Figure 16: eCh0raix(9) log.New function name undefined.

Figure 17: eCh0raix(9) log.New function couldn’t be renamed.

Figure 18 shows the lines in our script that are responsible for solving this challenge.

Figure 18: go_func.py.

UNRECOGNIZED STRINGS

The second issue that our scripts help to solve is related to strings within Go binaries. Let’s go back to the ‘Hello World’ 
examples and take a look at the defined strings within Ghidra. 

In the C binary(3) 70 strings are defined, among which ‘Hello, World!’ can be found. Meanwhile, the Go binary(5) includes 
6,544 strings but searching for ‘Hello’ gives no result. Having such a high number of strings already makes it hard for 
reverse engineers to find the relevant ones, but in this case, the string that we would expect to find is not even recognized 
by Ghidra.
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Figure 19: world_c(3) defined strings with ‘Hello, World!’.

Figure 20: world_go(5) defined strings without ‘Hello’.

To understand the problem here, the first step is to understand what a string in Go is. Unlike in C-like languages, where 
strings are sequences of characters terminated with a null character, in Go strings are sequences of bytes with a fixed 
length. Strings are Go-specific structures, built up by a pointer to the location of the string and an integer, which is the 
length of the string.

Figure 21: A Go string.
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These strings are stored within Go binaries as a large string blob, which consists of the concatenation of the strings without 
null character between them. So, while searching for ‘Hello’ using strings and grep gives the expected result in C, in the 
case of Go a huge string blob is returned containing somewhere ‘Hello’.

Figure 22: world_c(3) string search for ‘Hello’.

Figure 23: world_go_println{13) string search for ‘Hello’.

Since the definition of   strings is different, and as a result referencing them within the assembly code is also different from 
the usual C-like solutions, Ghidra has a hard time defining the strings within Go binaries. 

The string structure can be allocated in many different ways, it can be created statically or dynamically during runtime, it 
varies over architecture and, even within the same architecture, multiple solutions are possible. Our team created two 
scripts to help Ghidra identify strings.

Dynamically allocated string structures

In the first case string structures are created at runtime. A sequence of assembly instructions is responsible for setting up 
the structure before a string operation. Thanks to the different instruction sets it varies across architectures. In the next few 
paragraphs we will go through a couple of use cases and show the instruction sequences that our script (find_dynamic_
strings.py) [29] is looking for.

x86

First let’s start with the ‘Hello World’ example(5).

Figure 24: world_go(5) dynamic allocation of string structure.
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Figure 25: world_go(5) undefined ‘Hello, World!’ string.

Figure 26 shows how the code looks after executing the script.

Figure 26: world_go(5) dynamic allocation of string structure after executing find_dynamic_strings.py.

The string is defined as shown in Figure 27.

Figure 27: world_go(5) defined ‘Hello, World!’ string.

And ‘Hello’ can be found in the defined strings view in Ghidra, as shown in Figure 28.
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Figure 28: world_go(5) defined strings with ‘Hello’.

The script is looking for the following instruction sequences in case of 32-bit and 64-bit x86 binaries:

Figure 29: eCh0raix(9) dynamic allocation of string structure.
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Figure 30: world_go(5) dynamic allocation of string structure.

ARM

For the 32-bit ARM architecture an eCh0raix ransomware sample(10) will be used to illustrate the string recovery.

Figure 31: eCh0raix(10) dynamic allocation of string structure.

Figure 32: eCh0raix(10) pointer to string address.

Figure 33: eCh0raix(10) undefined string.
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Figure 34 shows how the code looks after executing the script.

Figure 34: eCh0raix(10) dynamic allocation of string structure after executing find_dynamic_strings.py.

The pointer is renamed, and the string is defined:

Figure 35: eCh0raix(10) pointer to string address after executing find_dynamic_strings.py.

Figure 36: eCh0raix(10) defined string after executing find_dynamic_strings.py.

The script is looking for the following instruction sequence in case of 32-bit ARM binaries:

Figure 37: The instruction sequence the script looks for.

For the 64-bit ARM architecture a Kaiji sample(12) will be used to illustrate the string recovery. Here, two instruction 
sequences are used that only differ in one instruction.

Figure 38: Kaiji(12) dynamic allocation of string structure.

Figure 39 shows how the code looks after executing the script.
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Figure 39: Kaiji(12) dynamic allocation of string structure after executing find_dynamic_strings.py.

The strings are defined:

Figure 40: Kaiji(12) defined strings after executing find_dynamic_strings.py.

The script is looking for the following instruction sequences in case of 64-bit ARM binaries:

Figure 41: The instruction sequence the script looks for.

As the above examples show, after executing the script, dynamically allocated string structures can be recovered. This gives 
a great help to reverse engineers trying to read the assembly code or look for interesting strings within the defined string 
window in Ghidra.

Challenges

The biggest drawback of this approach is that for each architecture, and even for different solutions within the same 
architecture, a new branch has to be added to the script. Also, it is very easy to evade these predefined instruction sets. In 
the example shown in Figure 42, in a Kaiji 64-bit ARM malware sample(12) the length of the string is moved to a register 
earlier than our script would expect, therefore this string will be missed.
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Figure 42: Kaiji(12) dynamic allocation of string structure in an unusual way.

Figure 43: Kaiji(12) undefined string.

Statically allocated string structures

In the next case our script (find_static_strings.py) [30] looks for string structures that are statically allocated, meaning the 
string pointer is followed by the string length within the data section of the code.

To illustrate this let’s look at the x86 eCh0raix ransomware sample(9).

Figure 44: eCh0raix(9) static allocation of string structures.

In Figure 44 string pointers are followed by string length values, however Ghidra couldn’t recognize the addresses or the 
integer data types, with the exception of the first pointer, which is directly referenced from the code.
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Figure 45: eCh0raix(9) pointer.

Following the string addresses, the undefined strings can be found. 

Figure 46: eCh0raix(9) undefined strings.

After executing the script, the string addresses will be defined, along with the string length values and the strings 
themselves.

Figure 47: eCh0raix(9) static allocation of string structures after executing find_static_strings.py.
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Figure 48: eCh0raix(9) defined strings after executing find_static_strings.py.

Challenges

To eliminate false positives we limit the string length, search only for printable characters, and only in data sections of the 
binaries. Obviously, as a result of these limitations strings can easily be missed. If you use the script feel free to experiment 
with it, change the values and find the best settings for your analysis. The following lines in the code are responsible for the 
length and character set limitations:

Figure 49: find_static_strings.py.

Figure 50: find_static_strings.py.

Further challenges in string recovery

Ghidra auto analysis can falsely identify certain data types. When this happens, our script will fail to create the correct data 
at that specific location. To overcome this issue, first the incorrect data type has to be removed, then the new one can be 
created. 

As an example, let’s take a look at the eCh0riax ransomware(9) with statically allocated string structures. Figure 51 shows 
the static allocation of string structures.

Here, the addresses are correctly identified, however the string length values, that are supposed to be integer data types, are 
falsely defined as undefined values. 

Figure 52 shows the lines in our script that are responsible for removing the incorrect data types.

As shown in Figure 53, after executing the script all the data types are correctly identified and the strings are defined.
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Figure 51: eCh0raix(9) static allocation of string structures.

Figure 52: find_static_strings.py.

Figure 53: eCh0raix(9) static allocation of string structures after executing find_static_strings.py.
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Another issue comes from the fact that in Go binaries strings are stored concatenated, in a large string blob. In certain 
cases, Ghidra define these blobs as one string. These can be identified by the high number of offcut references. Offcut 
references are references to certain parts of the defined string, not the address where the string starts, rather somewhere 
inside the string.

The example shown in Figures 54 and 55 is from an ARM Kaiji sample(12). 

Figure 54: Kaiji(12) falsely defined string in Ghidra.

Figure 55: Kaiji(12) offcut references of a falsely defined string.

To find falsely defined strings, one can use the defined strings window of Ghidra and sort the strings by offcut 
reference count. Large strings with numerous offcut references can be undefined manually before executing the string 
recovery scripts, so the scripts can successfully create the correct string data types. Figure 56 shows Kaiji’s defined 
strings.

Finally, we will show an issue in versions of Ghidra decompiler view prior to version 9.2. Once a string is successfully 
defined, either manually or by one of our scripts, it will be nicely visible in the listing view of Ghidra, giving a great help to 
reverse engineers when reading the assembly code. However, the decompiler view in earlier versions of Ghidra couldn’t 
handle fixed length strings correctly and, regardless of the length of the string, it would display everything until it found a 
null character. Thankfully this issue was solved in Ghidra 9.2. 

The issue is illustrated in Figures 57 and 58 using the eCh0raix sample(9).
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Figure 56: Kaiji(12) defined strings.

Figure 57: eCh0raix(9) defined string in listing view.

Figure 58: eCh0raix(9) defined string in decompile view in Ghidra 9.1.
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FUTURE WORK
In this paper we proposed solutions for two issues within Go binaries to help reverse engineers when they are using Ghidra 
to statically analyse malware written in Go. In the first topic we discussed how to recover function names in stripped Go 
binaries. Then we proposed multiple solutions for defining strings within Ghidra. The scripts that we created and files we 
used for the examples in this paper are publicly available, the links can be found below.

There are even more possibilities to aid Go reverse engineering – the two topics that we discussed here are just the 
beginning. As a next step we are planning to dive deeper into Go function call conventions and types system. 

In Go binaries arguments and return values are passed to functions using the stack, rather than registers. Currently, Ghidra 
has a hard time correctly detecting these. Helping Ghidra to support Go’s calling convention will help reverse engineers to 
understand the purpose of the analysed functions.

The other interesting topic is types within Go binaries. Just as it was possible to extract function names from the 
investigated files, Go binaries also store information about the used types. Recovering these types can be a great help 
during reverse engineering. In the example shown in Figures 59 – 61 we recovered the main.Info structure in an eCh0raix 
ransomware sample(9). This structure tells us what information the malware is expecting from the C2 server.

Figure 59: eCh0raix(9) main.info structure.

Figure 60: eCh0raix[9] main.info fields.

Figure 61: eCh0raix(9) main.info structure.

As these examples illustrated there are still a lot of interesting areas to discover within Go binaries from reverse 
engineering point of view. 
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FILES USED DURING THE RESEARCH

File name SHA-256

(1) world.c 761301bb14ea3b678650fc1b6da768f009387ee726712e291d57e2d7985613d0

(2) world.go 7cb3316a7b89eb996e8dbb0d0fb277136cd588cc54642f3b09aa84cd177cb3a2

(3) world_c 76a5c4ef9277b97660f2c412e67ff2c3826e699913db86cd333e8f1d4fb5b8a3

(4) world_c_strip 486a93362a6a8bc3b449fd6ba07656011c687ed31a19091c329a434bff4d75bb

(5) world_go d0d4781de4ffd5fbe18d59328eccd373a782eecdf55a2c5199b7dc6598cfb99e

(6) world_go_strip 9b975bd9406a8b79a414195e184be0c82bb1593979577f0344c797f9bcd4ad0b

(7) world_go.exe 9e36291f5fc67fdb9e5e17b636d34b39f2cc39f328916a9012a8f8d545e9d0c8

(8) world_go_strip.exe c5b66623942a0cea6df30541e92afe93172be7bb4dbdd42a1fa354e9edd79a1d

(9) eCh0raix - x86 154dea7cace3d58c0ceccb5a3b8d7e0347674a0e76daffa9fa53578c036d9357

(10) eCh0raix - ARM 3d7ebe73319a3435293838296fbb86c2e920fd0ccc9169285cc2c4d7fa3f120d

(11) Kaiji - x86_64 f4a64ab3ffc0b4a94fd07a55565f24915b7a1aaec58454df5e47d8f8a2eec22a

(12) Kaiji - ARM 3e68118ad46b9eb64063b259fca5f6682c5c2cb18fd9a4e7d97969226b2e6fb4

(13) world_go_println fa00f5ad2aa79a6245a28516bc285ae8c36f075d818787aadff6f3e850e2ec5c

SOLUTIONS BY OTHER RESEARCHERS FOR VARIOUS TOOLS

IDA Pro

• https://github.com/sibears/IDAGolangHelper

• https://github.com/strazzere/golang_loader_assist

radare2 / Cutter

• https://github.com/f0rki/r2-go-helpers

• https://github.com/JacobPimental/r2-gohelper/blob/master/golang_helper.py

• https://github.com/CarveSystems/gostringsr2

Binary Ninja

• https://github.com/f0rki/bn-goloader

Ghidra

• https://github.com/felberj/gotools

• https://github.com/ghidraninja/ghidra_scripts/blob/master/golang_renamer.py
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