
UNCOVERING AUTOMATIC
OBFUSCATION-AS-A-SERVICE FOR
MALICIOUS ANDROID APPLICATIONS
Vit Sembera
Trend Micro, Czech Republic
vit_sembera@trendmicro.com

Masarah Paquet-Clouston
GoSecure, Canada
mcpc@gosecure.net

Sebastian Garcia
Czech Technical University, Czech Republic
sebastian.garcia@agents.fel.cvut.cz

Maria Jose Erquiaga
Cisco Systems, Czech Republic
merquiag@cisco.com

7 - 8 October, 2021 / vblocalhost.com

www.virusbulletin.com

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

2 VIRUS BULLETIN CONFERENCE OCTOBER 2021

ABSTRACT
With the security community regularly developing mechanisms for malware detection, malware samples are constantly
being obfuscated through various techniques. Although these changes are suspected to be automatic, there has been no
research investigating how such automation works, how it is offered in the underground community, what obfuscation
techniques are favoured, and whether offering automation-as-a-service is profitable.

This research presents a deep dive investigation into an obfuscation-as-a-service platform for Android applications
advertised on underground forums. The various obfuscation techniques used by the service are uncovered and the service’s
efficiency is evaluated. The potential revenue made by those behind the service is also estimated based on open-source
information found on various underground forums.

This research provides the first overview of such automatic service, which takes advantage of the whole malware-as-a-
service industry, providing medium quality obfuscation for the Android malware market. Although the technical
obfuscations are not state-of-the-art, the service succeeds in reducing detection for malicious Android applications. We
conclude that the active use of the service highlights the need for the malware market to develop better obfuscation
techniques, hence the good job that the security community is doing at quickly detecting changing malware. We also
conclude that this service seemed to generate enough revenue for the group, given its automatic nature and purpose. Given
that automatic services like this may be a greater problem in the future of malware obfuscation, this research provides a
first technical analysis of the details of such obfuscation service and the possible impact in detection results.

1. INTRODUCTION

Malware is obfuscated and re-deployed continually due to the good work of the security community. This is also true for
Android Application Packages (APKs), especially considering that, in 2017, a higher number of distinct Android malware
files were observed in comparison to Windows malware [1]. Subsequently, there has been increasing work on Android
malware [2], [3], as well as its obfuscation techniques [4], [5], and the efficiency of anti-malware products in detecting
them [5 – 8]. In parallel, the cybercrime industry has emerged [9] and Android malware authors can turn to this industry to
find new techniques to obfuscate their malicious samples.

Although obfuscation-as-a-service is a known specialization in the cybercrime industry, the mechanics behind the scene of
such specialization have yet to be studied – including, for example, the challenges faced by highly specialized individuals
or what kind of attackers benefit most from these services. This study provides a first overview of a specialized service
offering automated obfuscation-as-a-service for malware Android authors. The service was reported in [10], [11] as actively
used by Android botnet operators.

The analysis of the service was both technical and contextual. First, the obfuscation techniques used by the service were
uncovered through static analysis and reverse engineering. Second, the business reality of those behind the service was
explored through a series of short analyses of the service’s usage, efficiency, potential profitability and market competition.
The study’s key takeaways are:

• The service offered average quality obfuscation, with most obfuscation techniques already known by the security
industry.

• Among one novel technique, the use of Goto jumps between code blocks was ingenious as almost all Java decompilers
were unable to keep track of the code flow.

• The service’s clients are most likely large-scale attackers with highly malicious applications.

• Those offering the service have made a minimum revenue of USD 5,100 (conservative) to USD 61,160 (optimistic) for
a six-month operation.

This study yields unique insights into an obfuscation service that can be used to start understanding the specialization
processes currently trending in the cybercrime industry. Automation is key for fast adaptation in the malware world,
opening a door to a new economy of services.

This paper is organized as follows: sections 2 and 3 survey the literature. Section 4 presents the methods and data. Section
5 shows the obfuscation techniques. Section 6 discusses the service’s business context.

Section 7 goes over the discussion and section 8 concludes.

2. DETECTING CAT, HIDING MOUSE

Obfuscation aims at changing a program while preserving its functionality [12] and has successfully been used by malware
authors to avoid detection for a long time. It makes an application more difficult to analyse, hiding its intentions [7], [12].

There are many techniques to obfuscate malware, including encryption, oligomorphic malware that changes embedded
decryptors, polymorphic malware that forces a large number of decryptors, and code injection [12]. Obfuscation can be as
simple as a new packing technique [12], to more complex metamorphic malware that changes itself as it propagates [2].

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

3VIRUS BULLETIN CONFERENCE OCTOBER 2021

As the ecosystem for Android malware is thriving [3], [13], Android malware authors use these obfuscation methods to
avoid anti-virus detection – a necessary means given the easy-to-reverse nature of Java [14]. Several studies have looked at
the efficiency of anti-malware products to detect obfuscation methods in Android malware and they all concluded that
trivial transformations, such as repacking, disassembling, identifier renaming and data encoding could evade most
anti-virus products [5], [6], [8]. On the other hand, recently two studies focused on detecting obfuscation techniques, and in
both cases, several obfuscation techniques were found to be easy to detect [4], [7]. This may explain why malware authors
keep upping their game, developing new obfuscation techniques, such as run-time obfuscation, a novel technique that was
used in 80% of the 2,000 malware samples studied in Wong and Li (2018) [4].

To buy toolkits to automatically obfuscate malware [15] or to discuss new strategies to avoid detection, one can now turn to
the cybercrime industry.

3. SPECIALIZATION IN OBFUSCATION-AS-A-SERVICE
Over the past 20 years, malware authors have developed various strategies to organize and find business partners [16 – 19].
From online anonymous chat rooms to informal markets, and nowadays formal marketplaces, malware authors can trade
their malicious skills and/or software through various means. These platforms, along with the interesting potential
profitability surrounding cybercrime activities, have led to the rise of a cybercrime industry [9], [16], [20], [21], which
currently accounts for half of all property crime [9]. This industry is characterized by a strong trend towards specialization
and professionalization [22], [23]. Such specialization reduces the costs surrounding cybercrime through increased
productivity and profitability [24]. Thus, individuals can now specialize in one skill and outsource the remaining tasks [21].

Among one specialization is obfuscation-as-a-service. Indeed, the cat-and-mouse game between attackers [2 – 5] and
defenders [5 – 8] discussed above resulted in the appearance of obfuscation-as-a-service platforms. Since malware creators
may not always have the skills to do good obfuscation, and they need to speed up the process, they must resort to using
such a service.

Offering specialized services for malware obfuscation involves mastering a set of special technical skills, such as
automating the process, generalizing the obfuscating techniques to all types of malware, adding new techniques, verifying
that the techniques still work, and managing the business side.

To provide novel insights on this specialization, this study investigates an obfuscation-as-a-service, uncovering the various
obfuscation techniques developed by the service, as well as providing a first understanding of the service’s business
context, including the service’s usage, efficiency, potential profitability and competitors.

The service is named fttkit.com. It was found in a published investigation in early 2020 about a large-scale botnet operation
that distributed Android trojans targeting Russian victims and banks [10]. The service required a coupon code to log into the
platform, which we were able to find in hacking forums such as HackForums, xss.is, procrd.top, alligator-cash, or exploit.in.
The service was always advertised as ‘fully automated service for protection of Android applications’. Inside the service, the
main language used was Russian, suggesting that the platform’s customers were mainly Russian speakers. The prices for the
service varied, ranging from USD 20 for obfuscating one APK to unlimited obfuscation of APKs for USD 850 per month, as
shown in Figure 1. In order to use the service, payments needed to be sent to a one-time generated bitcoin address.

Figure 1: Prices in the fttkit.com obfuscation service as shown inside the website.

4. METHODOLOGY
The first part of the research focuses on the technical analysis of the APKs. It consists of the reverse engineering and
analysis of the selected APKs. The second part of the research focuses on quantifying the revenues related to the service. It
includes an estimation of the service’s efficiency, usage and revenue.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

4 VIRUS BULLETIN CONFERENCE OCTOBER 2021

4.1. Uncovering the obfuscation techniques

To analyse how the service worked, three APKs were obfuscated and thoroughly reversed engineered. A fourth one, a
benign one, was obfuscated later in the research for comparison purposes.

4.1.1. Obfuscated applications

The four applications obfuscated for the analysis are briefly presented below.

• Android locker. The Android locker, called install.apk, was analysed by pwncode.io in May 2020 [25]. This malicious
APK adds a device administrator to reset the password, locks out the user from the device, and asks for a ransom. It
was selected because it had an evident malicious behaviour and did not use any obfuscation techniques.

• SMS stealer. The second APK was an SMS stealer called Android-SMS-Stealer.apk [26]. The APK is part of a botnet
and steals SMSs. Some of the strings in the code of this application were encrypted, but the layout of the application
was simple. It was selected because it was easy to access the code and we had a good understanding of the APK’s call
functions. Both the install.apk and the Android-SMS-Stealer.apk were detected as malicious by dozens of anti-virus
engines in VirusTotal [27], which also made them good candidates for obfuscation.

• Potential Adware. The third APK was called swimmingpool.apk and did not seem to have any malicious behaviour.
However, when running the application, unwanted ads appeared. Also, on VirusTotal, two anti-virus engines flagged it
as malicious. It was selected because its behaviour was ‘shady’, potentially spreading adware, yet not necessarily
100% malicious.

• Benign. Further in the research, a fourth APK was obfuscated. This APK was a benign one which showed ‘Hello
World’ on a window1.

4.1.2. Reverse engineering process

First, the obfuscated applications were compared with the original ones using the static analyser tool MobSF (Mobile
Security Framework) [28]. MobSF provided a high-level comparison of the changes. Second, the obfuscated APKs were
manually reversed engineered using the JEB Android decompiler tool [29]. The JEB commercial software was necessary
because most open-source Java decompilers could not correctly follow the obfuscated code. Only the open-source Ghidra
tool [30] was able to decompile the obfuscated APKs, but was unfortunately not able to properly reconstruct the
initialization values.

The obfuscation techniques used by the service were the same for all applications. Thus, the results section summarizes the
techniques uncovered and all examples are pulled from the obfuscated Android locker application .

4.2. Assessment of the business of obfuscation

To understand the business context surrounding such activity, the service’s usage, efficiency, potential profitability and
potential competitors were assessed through a series of analyses presented below.

4.2.1. Assessing service usage

The service’s usage was assessed using VirusTotal, a ‘free service that analyzes files and URLs for viruses, worms, trojans
and other kinds of malicious content’ [27]. It aggregates results from more than 65 anti-virus tools [31], [32]. Given
VirusTotal’s wide use in the security community, most malware samples will end up being uploaded to the service by
security operators within a few days [13], [31]. Thus, using VirusTotal, applications obfuscated by the service were
fingerprinted.

Detecting other obfuscated applications in the wild

Thanks to indicators uncovered during the reverse engineering process (as explained below), specific modifications made to
the obfuscated APKs could be used to identify them in the wild using YARA rules [33] on VirusTotal. More precisely, any
ZIP or JAR file that contained a radio.ogg file in a /tracks folder could potentially be a file obfuscated by the service
investigated. Using this fingerprint, we developed a YARA rule [33] and conducted two Retrohunt jobs (which allows
searching for any files submitted on VirusTotal in the past 90 days). The first one, launched on 22 June 2020, found 2,173
files, of which 1,051 were not corrupted. The files were submitted to VirusTotal between 11 April and 22 June 2020. The
second job, launched on 14 October 2020, extracted 2,051 files, of which 2,006 were not corrupted. The files were
submitted to VirusTotal between 17 July and 14 October 2020.

In total, 3,058 APKs were found on VirusTotal over a six-month period. All decompiled files had features similar to the
ones investigated: the strings in the manifests were all random and they all had a /tracks folder containing a file named
radio.ogg. The files found are thus, with a high degree of certainty, obfuscated with the service investigated.

1 Downloaded from https://apkpure.com/helloworld/my.v1rtyoz.helloworld.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

5VIRUS BULLETIN CONFERENCE OCTOBER 2021

Grouping obfuscated applications

These 3,058 applications needed to be grouped to find the probable clients to which they belonged. However, given the
obfuscation applied on them, they were hard to distinguish. Fortunately, a mistake was made by the operators, leaking
information about the original APK within the obfuscated one. In short, the /res/values folder of the obfuscated applications
included strings.xml and ids.xml files with clear text strings, such as Adobe Flash Player is a lightweight [...]. This finding
was confirmed by looking at the applications we obfuscated and comparing the clear text strings with the ones in the
original files. This mistake was thus leveraged to group the obfuscated applications based on similar strings in the
strings.xml file and the ids.xml files.

In total, seven distinct groups were found, an eighth included all outliers and a ninth included the applications obfuscated
for this research. To have a better idea of what the groups represented, a dozen APKs were sampled randomly from each
group and investigated using the apklab.io service. This mobile-threat intelligence platform is created and maintained by
Avast and allows quick static and dynamic analyses of APKs.

4.2.2. Service efficiency

The service’s efficiency was assessed using the VirusTotal platform. The platform aggregates the reports of whether a file is
malicious or not from more than 65 anti-virus tools, as mentioned above. If the obfuscated applications are detected as
malicious by several anti-virus engines on VirusTotal, then the service’s efficiency is considered low, as the malicious intent
of the application could not be successfully concealed.

4.2.3. Potential revenue

Operators’ potential revenue was estimated considering the 3,058 applications found on VirusTotal and the different price
bundles offered by the platform (see Figure 1). Two possible revenue scenarios were developed. The first scenario, a
conservative one, considered that all APKs come from the same client, who bought an API price bundle at USD 850/month.
The second scenario, an optimistic one, considered that all APKs found on VirusTotal were paid at the highest price of USD
20/APK.

Assessing competitors

Potential competitors were found by searching for the keywords ‘crypt’ (which is a ‘slang’ word used to talk about the
service), ‘obfuscation’ and ‘protection’ in two darknet monitoring services: Flare.systems [34] and Sixgill [35]. Since
January 2020, six potential competitors were found, advertising ‘APK crypt service’ on different underground forums. The
platforms on which they advertised their services and their prices are presented in the results.

4.3. Ethical considerations

One ethical consideration that has to be outlined is that USD 80.76 was sent to a service known to conduct obfuscation-as-
a-service for malware authors. However, since the aim of the research was to assess the service, such action was inevitable.
No human interaction was involved and we received ethical approval from the Czech Technical University (N.CS11232)
prior to starting the research. The hope is that the outcome of this research will surpass the harms created by contributing
once to a service financing malware authors.

5. DEOBFUSCATING OBFUSCATION
This section analyses the obfuscation techniques used by the service. It starts with a static analysis, followed by manual
reverse engineering.

Note that part of the obfuscation process was uncovered in a blog post [36] focused on understanding an Android
banking trojan named Geost [10], [11]. The Geost application was obfuscated with the service. In the results section, the
main differences between the results of the blog [36] and our results are highlighted, illustrating how the service has
evolved.

5.1. Static analysis results

The first analysis of the obfuscated APKs was a static analysis using the MobSF tool [37]. This tool provided an overview
of the main differences between the original APK and obfuscated ones. These differences are shown in Table 1 for the
Android locker APK. Note that MobSF uses the Common Vulnerability Scoring System (CVSS) [38] to score
vulnerabilities found inside an APK. CVSS scores are low (0.1 – 3.9), medium (4.0 – 6.9) or high (7.0 – 10). The security
score, on the other hand, represents a calculation of risk, values can be critical (0 – 15), high (16 – 40), medium (41 – 70),
and low (71 – 100).

Table 1 shows that the CVSS score of the APK changed from 5.9 to zero after obfuscation because MobSF was not able to
find any vulnerability. Also, the overall Security Score increased for the obfuscated application (100/100) compared to the

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

6 VIRUS BULLETIN CONFERENCE OCTOBER 2021

original one (75/100). Finally, the package name of the obfuscated file changed to pseudo-random letters and the file
included additional services. This provides evidence that the service is good at evading detection by static tools.

Original Obfuscated

CVSS 5.9 0

Security score 75/100 100/100

Package name com.chrome.beta com.
lorxvclhz.
Veskdmzqmv

SDK (target and min) 8 8

Exported activities 0 0

Services 1 3

Exported services 0 0

Receivers 4 4

Exported receivers 4 4

Providers 0 0

Trackers 0 0

Signer certificate good good

Table 1: Main differences between the original and obfuscated file for the Android Locker APK.

5.2. Reverse engineering results

After the static analysis, we performed a manual reverse engineering of the obfuscated APKs to find the specific techniques
used and how they changed.

The original Android locker APK consisted of a Dalvik executable with the following structure:

• Manifest file

• Signing certificate

• classes.dex

• Resources directory

After reverse engineering, the structure of the obfuscated APK was as follows:

1. A Dalvik executable dropper and launcher in clases.dex file.

2. An encrypted second-stage Dalvik executable payload (original classes.dex code with partially obfuscated symbol
names) stored in tracks/radio.ogg.

3. Manifest file with obfuscated object names.

4. Resources directory.

5. Tracks directory containing several files with randomly generated names and radio.ogg file.

6. Signing certificate (different from original).

Consecutive stages of the APK lifetime are discussed below.

5.2.1. Dalvik executable dropper and launcher

The main purpose of the dropper is to open, decrypt and store a second-stage Dalvik executable payload. The dropper also
initializes the second stage, links missing references in the Manifest file to the initialized code methods, and redirects code
execution to the Application.onCreate() method in the payload. For this Dalvik file, the following obfuscation methods
were used:

• Injected code

• Symbol obfuscation

• RC4 strings encryption

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

7VIRUS BULLETIN CONFERENCE OCTOBER 2021

• Java reflection code

• Statically linked libraries

Comparing the obfuscated Android locker APK with the original APK from the Geost botnet (that triggered this research),
portions of the dropper code had evolved slightly and the amount of injected code had increased. This indicates that those
behind the protection service are actively updating their service.

Injected code

The service injected randomly generated junk code structures, including:

1. Boolean, integer, integer arrays and string variables.

2. Pseudo-randomly generated Boolean, integer and string literals (constants).

3. Assignment and calculation statements using variables and literals mentioned in points 1 and 2.

4. if/then/else statements using variables, literals and statements mentioned in points 1, 2 and 3, for hardly predictable
code branching.

5. switch/case/default statements with the same purpose as in point 4.

6. try/catch blocks.

7. Loops, decompiled as while or for blocks.

8. Goto jumps between blocks mentioned in points 4, 5 and 6.

9. Class methods with randomly generated arguments using variables and literals as in points 1 and 2. These methods
are frequently nested, calling each other.

10. Classes with variables and literals from points 1 and 2 and their constructors.

The whole obfuscated dropper consists of four classes, the attached libraries contain 416 classes, and the remaining 715
classes are junk code. Thus, 63% of the classes are junk. The overall size of the dropper Dex file is 941KB, 188 times
larger than the original 5KB Dex file of the second stage. Also, compared with the original Android locker APK of 39.6KB,
the obfuscated APK is 1.2MB, being 30 times larger.

The Goto jumps between code blocks represent a novel ingenious obfuscation method as almost all Java decompilers failed
to keep track of the code flow. For example, the Jadx tool gave warnings such as ‘Sanity check requires truncation of
jumptable, Bad instruction - Truncating control flow and Second-state recovery error’. Only the Ghidra tool seemed to be
able to decompile the application, but it was not able to properly reconstruct the initialization values.

The modification of the code flow by inserting if/then/else, switch/case and try/catch constructions was ingenious. All of
these constructions used a fake variable that was assigned a specific value to select the correct code path. An example of the
if/then/else technique is shown in Figure 2.

Figure 2: Obfuscation method that inserts junk control flow structures: a fake while loop, a fixed variable value to force the
output, and unique returns. The nop4() method was renamed during the deobfuscation analysis.

Symbol obfuscation

All symbols used in the obfuscated application, both for the dropper code and injected variables, have obfuscated names.
These names are six to 12 characters long and consist of pseudo-randomly generated alphanumeric strings with both lower
case and upper case letters. The same types of strings were used for symbols in the second-stage executable (which are also
referenced in the Manifest file for the application to run properly).

RC4 strings encryption

Most of the strings in the dropper were replaced with in-lined RC4 decryption function calls, taking an integer array of
encrypted text characters as an argument. Indeed, the RC4 algorithm for string encryption is divided into six separated
methods to avoid easy recognition. It took a significant effort to understand this obfuscation strategy.

From the six separated methods in the RC4 function, the first easily recognizable one swaps array elements for the RC4
decryption. Once deobfuscated and its return value had been changed to void (not int), it was easier to find that the RC4
initialization was actually split into two methods, both heavily obfuscated with junk code.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

8 VIRUS BULLETIN CONFERENCE OCTOBER 2021

The function inside the RC4 method is an array copy method. After an in-depth analysis, the complete deobfuscation of the
RC4 function was possible, as shown in Figure 3.

Figure 3: Deobfuscated code of the RC4 encryption function.

After deobfuscation, the RC4 private key could be uncovered. However, the service assigns a new RC4 private key to each
APK, so there is no reason for publishing it. Overall, these techniques made the reverse engineering process more difficult
while also ensuring that publishing the RC4 keys of one APK would not compromise other obfuscated ones.

Fortunately, the data is not encrypted as a stream, but as a block (without keeping RC4 internal state between decryption
calls) so each string array could be decrypted separately and easily. Based on this finding, the discovered private key could
be used to decrypt all the strings.

Java reflection code

The dropper code manipulates the encoded second stage using library methods with names like open(), read() and write(),
which indeed attracts the attention of the reverse engineer. It also needs to initialize second-stage classes and launch the
code in them, as well as call noticeable methods like getConstructor(). To hide these sensitive names, the dropper uses a
statically linked Java ASM reflection library with obfuscated symbols. The authors behind the obfuscating process seem to
be cautious, since some encrypted strings are even split into two parts, and at run-time, they are concatenated.

Besides all the encrypted strings used in stage 1, a few unencrypted decoy strings were left in the obfuscated APK. These
strings are probably intended to divert the attention of the analyst. For example, the deleteFile() method contains SQL
strings but they don’t have any usage in the APK, as shown in Figure 4.

Figure 4: Decoy strings inside the deleteFile() function with fake SQL manipulations that are not used.

A good example of a double technique is the combination of encrypted strings and reflection, as shown in Figure 5, where
the call to the encrypted RC4 method can be seen. After deobfuscating it, the method is more understandable, as shown in
Figure 6.

Figure 5: An example of a double technique, an encrypted function that is also a wrapper method.

Figure 6: Decrypted version of the wrapped code of Figure 5.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

9VIRUS BULLETIN CONFERENCE OCTOBER 2021

The evolution of the service can be seen in the use of the invokeMethod() method. This function is the core of all wrapper
methods. It is much more complicated in this version than in the original Geost APK. Since the output of the method is the
same, it is unclear why the method has been changed. In the current case of the Android locker, two new supporting
methods were added, and the function looks completely different.

Statically linked libraries

One of the main problems of using dynamically linked classes and method references is that their names would reveal
details about the code structure. Therefore, the service obfuscated and statically linked some libraries into the dropper.
Some symbols and strings in the libraries were not obfuscated to avoid linking problems with additional Android libraries.

5.2.2. Second-stage executable

The second stage of the reversing process was to look into the code responsible for dropping and launching the Dalvik
executable (Dex file from the original APK). There is a separate class definition for the hidden obfuscated application Dex
file decryptor, the dropper, the launcher and the application onCreate() wrapper. The authors used adequate measures to
hide this critical process by splitting already encoded strings. An example of all these techniques are shown in the code for
dropping the Dex file in Figure 7.

Figure 7. Code to drop the second-stage Dalvik executable (original APK to be obfuscated). The technique uses multiple
protection methods, such as separate class definitions, wrappers and splitting encoded strings.

One of the important data entries is param[2], where the file name of the encrypted second-stage Dalvik executable is
stored. In this case, the name is tracks/radio.ogg. The file is stored within the application files. The file is named as a radio
audio track.

In Figure 7 the method setDataStore() can be seen, which contains the name of the dropped Dex. In this case, the name of
the file is /skjoxawp.jar and the file type is changed to .dex afterwards. The content is decrypted with the same RC4 key as
the strings, resulting in a zipped Dalvik module that is loaded with the loadDex() method. The loadDex() method creates an
instance of a DexLoader class, which initializes the standard Java ClassLoader, DexClassLoader and a Dropper class

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

10 VIRUS BULLETIN CONFERENCE OCTOBER 2021

instance. The method then calls the openOutputStreamAndWriteAll() method from the FileDecryptor class on unzipped
data, doing all the read, decrypt and write work.

For manual second-stage file decryption, the first four bytes of the file containing the length of the data must be skipped.
Therefore, to analyse the obfuscated second-stage Dalvik file, we need first to find the private RC4 key in the first stage
code, then decode the name of the encrypted second-stage file (or it can just be guessed by the size of the file and its
contents), then remove the first four bytes, and finally decrypt and unzip the file.

The extracted and decompiled second-stage Dalvik modules are the same as in the Dalvik file within the original APK that
was sent to obfuscate, just with obfuscated symbol names which are referenced in the Manifest file.

5.2.3. Analysis of Manifest file with obfuscated object names

The manifest file of the obfuscated APK is quite normal, except for the fact that the symbol references are obfuscated. A
quick analysis revealed that the application requests quite a lot of user permissions, which may be enough to conclude that
the application is suspicious. One can also see that some symbols in the Manifest files for services and intents are
referencing non-existent objects, illustrating a suspicious behaviour. The reason for this is that objects are loaded and
initialized at run-time by the dropper.

6. ASSESSMENT OF THE BUSINESS OF OBFUSCATION
Given the various techniques of the obfuscation service now uncovered, the following section focuses on understanding the
business context surrounding the service, including its usage, efficiency, potential revenue and competitors.

6.1. Service usage: clientele size
From the 3,058 applications, seven distinct groups were found. An eighth group encompassed all the outliers, and a ninth
included the APKs obfuscated for this study. Table 2 shows details for each group: the number of APKs, what they tried to
pass as based on the title and the photo, and additional insights on those that were investigated. The additional insights
illustrate that the APKs within each group behave similarly, connecting to the same network domains or to similar domains
(such as ccc1ccc.ru or bbb1bbb.ru).

This analysis indicates that the obfuscation service is probably used by several actors involved in spreading malicious
applications related to malware. For example, the third group is associated with domains that are linked to an Android
banking trojan botnet [39] while the fourth group includes APKs that connect to the rakason.ru domain, which is related to
the Flexnet malware [40].

In sum, these APKs most likely do not belong to thousands of clients, but rather a small number of them (probably fewer
than ten).

ID APK faked as # APKs Insights on samples investigated

1 Flash Player, Instagram Shared 1,697 Connected to http://static.66.170.99.88.clients.your-server.de

2
Sistem Guncelles¸tirmesi¨ (system
update)

416
Connected to http://orucakacdkkaldi.com (104.217.127.209),
http://ba2a.com (108.187.35.84), selammigo34.com (34.91.209.109)
and http://gunaydinmorroc.com (104.217.127.131)

3

Android Guncelleme (Android update)

Browser Guncellemesi (browser
update)

251

Connected to https://hnoraip.world, https://kalyanshop.best,
https://dontworryman.club, https://Placeoftomcat.club. All hosted on
IP 46.227.68.99

kalyanshop.best is associated with an Android banking trojan

4 MOD (a lot of money) 49
Communicated to http://rakason.ru (81.177.139.80). Related to
Flexnet malware

5 Flash Player, Romance Mod, Spotify++ 115
Connected to https://ccc1ccc.ru, https://eee5eee.ru,
https://twitter.com. Hosted on IP 194.58.112.174

6
Flash Player, GoogleGPS, Android
Guncellemesi (Android Update),
Google Update

462 No connections and http://217.8.117.15

7 Notification (SMS app) 4
Connected to 142.250.102.188 and myluckycorp.com
(107.161.23.204, 209.141.38.71 and 192.161.187.200)

8 Other 60 Various APKs

9
Install (Android Locker)
Swimming Pool (Adware), Spy Mouse

3 Our APK submitted to the obfuscation service

Table 2: Estimated groups of clients of the obfuscation service based on APKs found in the wild that used this service.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

11VIRUS BULLETIN CONFERENCE OCTOBER 2021

6.2. Efficiency at obfuscating

The obfuscated and original APKs were uploaded to VirusTotal to assess the number of anti-virus engines that detected
them. The more anti-virus engines that detect the files, the less efficient the service is. Anti-virus detections are shown in
Table 3.

As shown in Table 3, the original Android locker and SMS stealer were detected by 27 and 29 of the anti-virus engines
respectively. Using the obfuscation service reduced the detection to 16 and 13 respectively. Thus, when the file is
malicious the service is efficient at reducing the detection rate by nearly half. On the other hand, the detection rate for
the potential adware APK increased from two detections to ten, showing that the service is useful only for very
malicious APKs.

AV detections
for original

AV detections
for obfuscated

Android locker APK 27 16

SMS-stealer APK 29 13

Adware APK 2 10

Table 3: Detection rates of the original and protected APKs when uploaded to VirusTotal.

To investigate further, an application that was not malicious – called benign APK in the methodology – was obfuscated
using the service. When uploaded to VirusTotal, the original application had no detections, but once obfuscated, eight
anti-virus engines out of 65 flagged it as malicious, even tagging it as a banker. These findings confirmed that non-
malicious applications could see their AV detection rate increase when using the obfuscation service.

Moreover, the three other obfuscated applications were also tagged as bankers by anti-virus engines, illustrating that the
obfuscation service is closely linked to Android banking trojans, to the point that many anti-virus engines detect the
obfuscated applications as bankers even if they are not.

The same process was conducted for the 3,058 applications found on VirusTotal. With little surprise, all of them were
flagged as malicious. The minimum number of anti-virus detections was eight, just like the benign application above, and
the maximum number of detections was 32. On average, the APKs found on VirusTotal were flagged as malicious by 18
anti-virus engines (with a standard deviation of 4.79).

6.3. Revenue scenarios

Leveraging the prices found on the platform as well as the number of APKs found on VirusTotal, two revenue scenarios
were developed to assess the potential monetary success of those behind the platform.

The first scenario, quite conservative, considered that all obfuscated applications would have been purchased with one API
access (USD 850/month) through six months of operation. In such a case, those behind the obfuscation-as-a-service
platform would have made USD 5,100. The second scenario, quite optimistic, considered that all the applications would
have been purchased at the highest price of USD 20 per APK. This would have yielded a revenue of USD 61,160.

These two scenarios allowed us to estimate a range. This range represents operators’ potential lower bound revenue for all
APKs found on VirusTotal.

6.4. Comparing the service with competitors

Since January 2020, six competitors have been found on different underground forums. They are presented in Table 4. The
prices advertised for each competitor were higher than the prices of the service investigated. Moreover, none of them
offered an automated platform with API access. Instead, they all asked potential clients to contact them via messaging
applications like Jabber or Telegram.

Potentially, these competitors conduct their obfuscations manually, rather than automatically, which could explain the
higher prices. This also means that the obfuscation-as-a-service investigated may have had a competitive edge by offering
an ‘automated service’. Otherwise, these competitors could also have an automated platform, but the access to the platform
would not be available publicly, as it was possible for the service to be investigated.

7. DISCUSSION
This study is, to the best of our knowledge, the first to assess an obfuscation-as-a-service platform by reverse engineering
the obfuscated APKs and comparing them with the original ones, while also looking at other high-level features of the
service, such as its usage, efficiency, potential profitability and potential market competitors.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

12 VIRUS BULLETIN CONFERENCE OCTOBER 2021

An average service

The obfuscation service modifies the applications using techniques such as complex strings splitting, decoy strings, and
nested junk flow control that increased the amount of code to analyse by x188. Most of the techniques used by the
obfuscation service have already been mentioned in studies investigating obfuscation techniques used by malware samples
[4], [5], [7], [14]. A novel technique discovered was the use of a high number of goto jumps, which obstructed almost all
Java decompilers as they could not keep track of the code flow.

Overall, this platform seems to provide a service that is not complex, but sophisticated enough to reduce anti-virus
detection of highly malicious files.

Limited potential clientele and average revenue

In terms of the size of the clientele, based on the APKs found, the service seems to have few clients. Although the
assessment is limited to VirusTotal, given the tool’s high visibility in the community, it is unlikely that the service is used
by hundreds of clients. Moreover, these potential clients are most likely those behind highly malicious applications since
our efficiency analysis illustrated that highly malicious applications would be less well detected while benign ones would
see an increase in detection rate.

The revenue scenarios illustrated that those behind the obfuscation platform made a minimum revenue of between USD 5,100
and USD 61,160 for about six months of operation. It is far from the millions of dollars sometimes reported in the
cybersecurity industry [41], but rather close to what seems to be an average revenue for an average cybercriminal. It is similar
to the amounts found for the less successful ransomware families [42]. Please note that these revenue scenarios are estimations
and are not comprehensive. They are based on the fingerprinted APKs found on VirusTotal and thus represent a lower bound.

Overall, the service is quite niche: it has a few clients who most likely need to conceal highly malicious applications and
need an automated platform to obfuscate several samples. The market competition analysis illustrated that the service was
the only one with a publicly available platform and offering lower prices. The success around the criminal business seems
to be moderate.

Benefiting large-scale attackers

Even for an average service, the obfuscation prices are not marginal: a minimum of $850 per month for unlimited access or
USD 20/APK are substantial costs. The clients seem to be large-scale attackers making enough money to pay for the
service. The marginal effect of the obfuscation service in decreasing detection rates is enough to increase the chances of
avoiding detection. Those benefiting the most from such obfuscation services may be those leveraging the specialization for
large-scale attacks, rather than those offering it.

Study limitations and future research

An important limitation of this study is the relatively small sample size, since the estimation and analysis is limited to
VirusTotal. Future studies will use other platforms, such as Virus Share [43]. However, the use of these platforms requires
further fingerprinting strategies. Also, only three APKs were obfuscated because (i) it was too expensive, and (ii) there was

Service Forum Date Prices

Competitor 1 XXS August 2020
$30 1 APK, $80 4 APKs (1 week), $135 12 APKs (1 week)

$250 25 APKs (1 week), $300 45 APKs (1 week)

Competitor 2

XSS, Club2crd

Dark Market

Devil Team,
CenterClub

January 2020 $20 1 APK, $100 week for 10 APKs/day

Competitor 3 Club2crd August 2020 $100 for 1 APK

Competitor 4 Hackforums July 2020 $25 1 APK, $70 3 APKs, $99 5 APKs

Competitor 5 Ufolabs October 2020
$30 1 APK, $150 4 APKs (1 week), $350 12 APKs (1 week)

$550 25 APKs (1 week), $1,000 45 APKS (1 week)

Competitor 6
SKYNETZONE CHAT

telegram group
November 2020

$150 4 APKs (1 week), $350 12 APKs (1 week), $550 25
APKs (1 week)

$1,000 45 APKS (1 week)

Table 4: List of potential competitors.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

13VIRUS BULLETIN CONFERENCE OCTOBER 2021

no indication that the service may differ. The analysis could be expanded to other obfuscation services, allowing a greater
understanding of the market for obfuscation-as-a-service. Nevertheless, the explanatory nature of this study yields unique
insights into the business reality of those behind specialized services in the cybercrime industry.

8. CONCLUSION
This study investigated an online service specialized in Android applications obfuscation. The techniques used were
uncovered and the business reality of those behind the service explored. On a technical level, the various techniques
described and discussed may be helpful to security analysts and reverse engineers who face obscure applications every day.
On a broader level, this research contributes to understanding the specialization processes behind the cybercrime industry.
The investigated service was found to be average, using a few novel obfuscation techniques. It had a potentially small
clientele formed of mainly large-scale attackers. Operators offering the service were estimated to have made a minimum
revenue ranging from USD 5,100 (conservative) to USD 61,160 (optimistic) for a six-month operation. In the end, those
who are likely to benefit the most from the specialized service are large-scale attackers who are able to pay the service’s
high fees in exchange for a slight decrease in the detection rate of their highly malicious applications. This study opens the
door to further research questions regarding automated specialized services related to the cybercrime industry, their relative
efficiency and who benefits the most from them.

ACKNOWLEDGEMENTS
We would like to thank the Stratosphere Laboratory and specifically Veronica Valeros for helping us throughout the
research. This work was achieved through a collaboration with the Czech Technical University, GoSecure Inc. and
Trend Micro. It was also partially funded by Avast Software through the Aposemat Lab.

This research paper resulted in a research publication at the 4th Workshop on Attackers and Cyber-Crime Operations of
the 2021 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW)

REFERENCES
[1] Nokia Threat Intelligence. Nokia threat intelligence 2017. Technical report, Nokia, 2017. Accessed 2020-10-14.

[2] Wong, W.; Stamp, M. Hunting for metamorphic engines. Journal in Computer Virology, 2(3):211–229, 2006.

[3] Zhou, Y.; Jiang, X. Dissecting Android malware: Characterization and evolution. In 2012 IEEE symposium on
security and privacy, pages 95–109. IEEE, 2012.

[4] Wong, M. Y.; Lie, D. Tackling runtime-based obfuscation in android with {TIRO}. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1247–1262, 2018.

[5] Zheng, M.; Lee, P. PC.; Lui, J. CS. Adam: an automatic and extensible platform to stress test Android anti-virus
systems. In International conference on detection of intrusions and malware, and vulnerability assessment,
pp.82–101. Springer, 2012.

[6] Canfora, G.; Di Sorbo, A.; Mercaldo, F.; Visaggio, C. A. Obfuscation techniques against signature based detection:
a case study. In 2015 Mobile Systems Technologies Workshop (MST), pp.21–26. IEEE, 2015.

[7] Mirzaei, O.; de Fuentes, J.M.; Tapiador, J.; Gonzalez-Manzano, L. Androdet: An adaptive Android obfuscation
detector. Future Generation Computer Systems, 90:240–261, 2019.

[8] Rastogi, V.; Chen, Y.; Jiang, X. Catch me if you can: Evaluating android anti-malware against transformation
attacks. IEEE Transactions on Information Forensics and Security, 9(1):99– 108, 2013.

[9] Anderson, R.; Barton, C.; Bolme, R.; Clayton, R.; Ganan, C.; Grasso, T.; Levi, M.; Moore, T.; Vasek, M. Measuring
the changing cost of cybercrime. 2019.

[10] Shirokova A.; Garino C. G.; Garcia S.; Erquiaga M. J. Geost botnet. operational security failures of a new Android
banking threat. IEEE European Symposium on Security and Privacy Workshops (EuroSP), (1):406–409, 2019.

[11] Shirokova, S.; García, S.; Erquiaga, M. J. Geost botnet. The story of the discovery of a new Android banking trojan
from an OpSec error. 2019. Accessed 2020-10-14.

[12] You, I.; Yim, K. Malware obfuscation techniques: A brief survey. In 2010 International Conference on Broadband,
Wireless Computing, Communication and Applications, pp.297–300. IEEE, 2010.

[13] Suarez-Tangil, G.; Stringhini, G. Eight years of rider measurement in the Android malware ecosystem: Evolution
and lessons learned. CoRR, abs/1801.08115, 2018.

[14] Dong, S.; Li, M.; Diao, W.; Liu, X.; Liu, J.; Li, Z.; Xu, F.; Chen, K.; Wang, X.; Zhang, K. Understanding Android
obfuscation techniques: A large-scale investigation in the wild. In the International Conference on Security and
Privacy in Communication Systems, pp.172–192. Springer, 2018.

[15] Birla, K.; Campus, G. Evolution and detection of polymorphic and metamorphic malwares: A survey. 2014.

.

UNCOVERING AUTOMATIC OBFUSCATION-AS-A-SERVICE FOR... SEMBERA ET AL.

14 VIRUS BULLETIN CONFERENCE OCTOBER 2021

[16] Afroz, S.; Garg, V.; McCoy, D.; Greenstadt, R. Honor among thieves: A common’s analysis of cybercrime
economies. In 2013 APWG eCrime Researchers Summit, pp.1–11, 2013.

[17] Dupont, B.; Côté, A.-M.; Boutin, J.-I.; Fernandez, J. Darkode: Recruitment patterns and transactional features of
“the most dangerous cybercrime forum in the world”. American Behavioral Scientist, 61(11):1219–1243, 2017.

[18] Holt, T.J. Examining the forces shaping cybercrime markets online. Social Science Computer Review,
31(2):165–177, 2013.

[19] Holt, T.J. Exploring the social organisation and structure of stolen data markets. Global Crime, 14(2-3):155–174,
2013.

[20] Collier, B.; Clayton, R.; Hutchings, A.; Thomas, D.R. Cybercrime is (often) boring: maintaining the infrastructure
of cybercrime economies. Workshop on the Economics of Information Security, WEIS, 2020.

[21] van Wegberg, R.; Tajalizadehkhoob, S.; Soska, K.; Akyazi, U.; Hernández Ganan, C.; Klievink, B.; Christin, N.;
van Eeten, M. Plug and prey? measuring the commoditization of cybercrime via online anonymous markets. In
27th USENIX Security Symposium (USENIX Security 18), pp.1009–1026, Baltimore, MD, August 2018.
USENIX Association.

[22] Hutchings, A.; Holt, T. J. A crime script analysis of the online stolen data market. British Journal of Criminology,
55(3):596– 614, 2015.

[23] Thomas, K.; Huang, D.; Wang, D.; Bursztein, E.; Grier, C.; Holt, T. J.; Kruegel, C.; McCoy, D.; Savage, S.; Vigna,
G. Framing dependencies introduced by underground commoditization. 2015.

[24] Moore, T.; Clayton, R.; Anderson, R. The economics of online crime. Journal of Economic Perspectives,
23(3):3–20, 2009.

[25] c0d3inj3cT. Android locker targeting russian users. Technical report, pwncode, 2020. Accessed 2020-10-14.

[26] Kersten, M. Android SMS-stealer. Technical report, Security through explanation, 2018. Accessed 2020-10-14.

[27] VirusTotal. https://www.virustotal .com/. Accessed 15 October 2020.

[28] Mobile security framework. https: //github.com/MobSF/Mobile-Security-Framework-MobSF. Accessed 15 October
2020.

[29] Jeb Android decompiler. https: //www.pnfsoftware.com/. Accessed 15 October 2020.

[30] Ghidra tool, 2020. https://ghidra-sre.org. Accessed 15 October 2020.

[31] Song, L.; Huang, H.; Zhou, W.; Wu, W.; Zhang, Y. Learning from big malwares. In Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems, pp.1–8, 2016.

[32] Ugarte-Pedrero, X.; Graziano, M.; Balzarotti, D. A close look at a daily dataset of malware samples. ACM
Transactions on Privacy and Security (TOPS), 22(1):1–30, 2019.

[33] Naik, N.; Jenkins, P.; Savage, N.; Yang, L.; Boongoen, T.; Iam-On, N.; Naik, K.; Song, J. Embedded yara rules:
strengthening yara rules utilising fuzzy hashing and fuzzy rules for malware analysis. Complex & Intelligent
Systems, 7(2):687–702, 2021.

[34] Flare.systems https://flare.systems/.

[35] Sixgill. https://www.cybersixgill.com/.

[36] Sembera, V. Geost: Anatomy of the Android Trojan Targeting Russia. Technical report, TrendMicro, 2020.
Accessed 14 October 2020.

[37] Bergadano, F.; Boetti, M.; Cogno, F.; Costamagna, V.; Mario Leone, M.; Evangelisti, M. A modular framework for
mobile security analysis. Information Security Journal: A Global Perspective, 29(5):220–243, 2020.

[38] Mokris, K. CVSS scores for mobile apps: Guidelines for measuring mobile risk. Technical report, NowSecure,
2017. Accessed 14 October 2020.

[39] https://twitter.com/rebensk/status/1269233752397557760?lang=en.

[40] https://twitter.com/verovaleros/status/1268248014596059136

[41] Goodchild, J. Cybercrime’s most lucrative careers. Technical report, DarkReading, 2021. Accessed 14 April 2021.

[42] Paquet-Clouston, M.; Haslhofer, B.; Dupont, B. Ransomware payments in the bitcoin ecosystem. Journal of
Cybersecurity, 5(1):tyz003, 2019.

[43] Virus Share. https://virusshare.com. Accessed 15 October 2020.

.

https://www.virustotal.com/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/
https://www.pnfsoftware.com/

