% VB2021
localhost

7 - 8 October, 2021 / vblocalhost.com

BUGS IN MALWARE - UNCOVERING
VULNERABILITIES FOUND IN MALWARE
PAYLOADS

Nirmal Singh & Uday Pratap Singh
Zscaler, India

nsingh@zscaler.com
upratap@zscaler.com

www.virusbulletin.com

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

ABSTRACT

Malware authors often take advantage of vulnerabilities in popular software and use various techniques to bypass security
products like anti-virus, sandbox, and intrusion detection systems. Security researchers find ways to patch such bugs in
products to make effective detection statically and dynamically. There has been a lot of research on anti-VM and
anti-sandbox techniques and techniques for bypassing AV products, but we haven’t seen much on the opposite side: finding
bugs in pieces of malware that stop them from spreading and infecting the system. Just like legitimate applications,
malware is also prone to bugs and coding errors which can cause it to crash or which can serve as backdoors for whitehats
to undo the damage. Such bugs can often persist in a family for a long time.

In this research we look at multiple prevalent malware families in which we uncovered various coding errors. The purpose
of this research is threefold:

1. To look at what type of vulnerabilities exist in some of the prevalent malware families.
2. To discuss the use of these bugs/vulnerabilities in preventing malware infection.

3. To find out whether these are real vulnerabilities/coding errors or escape mechanisms.

INTRODUCTION

We observed that sometimes malware doesn’t validate the output of a queried API or is unable to handle different types of
C&C response. Authors often develop malware according to their local environment and don’t take into consideration
techniques that may be present in target environments, such as ASLR and DEP, causing the malware to crash.

To illustrate multiple bugs and coding errors in malware, we have performed a large-scale analysis on a data set of
malicious samples collected from the Zscaler Cloud Sandbox based on a few behaviour signatures. We collected such
samples from late 2019 to March 2021 in the Zscaler Cloud. The files were clustered based on the behaviour of malware
observed in Zscaler Cloud Sandbox and given names accordingly.

The graph in Figure 1 shows data from the Cloud Sandbox over a six-month period. Of 500K+ samples marked as malware
by Cloud Sandbox during this period, 8,800+ samples showed execution errors.

8,896 hits

Dec 18, 2020 @ 14:23:01.140 - Jun 18, 2021 @ 14:23:01.140 Auto

.le.IllI. Lhi. IIII:.II.‘II..|i|II|.|IIII "II]....|||.__1|....|-II.._|I||n.lml..l.l..|_|.||.._||.|..__.L..__I.II.._.|||.._...",.I |.Llll||I_J.l|__llulll_.u.I_,ull:l

Figure 1: Malware showing execution errors.

In our research we found several malware families with a common set of bugs in their code and we found that sometimes a
single malware family has multiple bugs, providing a number of opportunities for security researchers to help victims.

We found that not all, but a few bugs can be helpful in preventing or cleaning infection, stopping encryption and the
spreading of malware if they are used as a kill-switch in a local system. We will cover the details of the kill-switch in a few
cases where a user can create certain files with certain privileges or add an additional registry entry into the system.

Malware authors are constantly upgrading their code and making it hard to analyse and detect using sandboxes and other
security products. Sometimes such changes and enhancements lead to coding errors.

In this paper we will cover different types of bugs in malware samples and divide those into a number of categories based
on MITRE’s Common Weakness Enumeration (CWE) system [1]:

* CWE-131: Incorrect Calculation of Buffer Size

* CWE-253: Incorrect Check of Function Return Value

e CWE-787: Out-of-bounds Write

* CWE-253: Incorrect Check of Function Return Value

¢ CWE-390: Detection of Error Condition Without Action

CWE-622: Improper Validation of Function Hook Arguments

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

* CWE-444: Inconsistent Interpretation of HTTP Requests

* CWE-280: Improper Handling of Insufficient Permissions or Privileges
* CWE-913: Improper Control of Dynamically-Managed Code Resources
* CWE-1023: Incomplete Comparison with Missing Factors

* CWE-474: Use of Function with Inconsistent Implementations

CASE STUDY 1: WIN32.PWS.VIDAR - MULTIPLE BUGS IN THE CODE

Vidar, also known as Vidar stealer, is a dangerous piece of malware that steals information and cryptocurrency from
infected users. It derives its name from the ancient Scandinavian god of vengeance. Besides credit card numbers and
passwords, Vidar can also scrape an impressive selection of digital wallets. In the Zscaler Cloud Sandbox, we found 94
samples showing execution errors (Figure 2).

Figure 2: Number of Vidar samples showing execution errors.

During our analysis of Vidar we found three bugs which caused the malware to crash. Details of the bugs are given below:

Bug 1: Incorrect check of function return value

This bug is about calling an API and performing an operation without validating the output of that API call. The registry
key shown below is related to WinSCP software, Vidar steals stored credentials in this registry key:

HKEY CURRENT USER\Software\Martin Prikryl\WinSCP 2\Sessions\Default%20Settings

Vidar uses the RegGetValueA API to extract a password from the registry path, but it doesn’t verify whether the call was
successful, as can be seen in Figure 3.

push offset aPassword_1 ; "Password”
lea eax, [ebp+BD78h+Hame]
push eax

ush ebp+BD78h+phkResult] ; HKEY_ CURRENWT_USER\Software
p p p _ _

; Martin PrikryliWinSCP 2%

; SessionshDefault%?8Settings

mov [ebp+8D7&h+var_D7C], ebx

call esi ; byte 473828 ; RegGetUaluen
moy ecx, [ebp+BD78h+var_D98] ; Hot return code check
lea eax, [ebp+BD78h+var_DOE]

push eax ; volid =

lea eax, [ebp+BD78h+var_2088]

push eax : int

lea eax, [ebp+BD78h+var_5088]

push eax ; int

lea eax, [ebp+BD78h+var_DSC]

push eax ; int

call DecryptPassUord

Figure 3: Password extraction from registry key.

It further tries to decrypt the password and makes a call to the strcpy_s ve++ runtime function with invalid parameters,
which results in the process crashing. This can be used as a kill-switch by keeping the above registry entry empty and
stopping infection for Vidar samples.

This bug is part of CWE-253 and it has consequences such as unexpected state, DoS, crash, exit, or restart of the system.

Bug 2: Common buffer used by an API to perform multiple tasks & out-of-bounds write

We found another bug in Vidar where an API used the same buffer with restricted size to download and read the payload. In
one of the samples, spotted in February 2021, it downloads config files from the C&C using the InternetReadFile Windows

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

API. As shown in the code snapshot in Figure 4, InternetReadFile uses the same buffer for downloading the subsequent
data. So it will corrupt the data downloaded earlier if the data size is more than 2,047 bytes (this size is defined in the
code). In this case the malware will not be able to download the correct config file.

IReadFile_Loop: : CODE XREF: DownLoadConfig+FF]j
mov eax, [ebp+804h+dwNumber0fBytesRead]
cmp eax, ebx
jz short loc_Y4O4FBE ; Exit Loop if dwNumberOfBytesRead is zero
moy [ebpteax+804h+Buffer], bl
lea eax, [ebp+804h+dwNumber0fBytesRead]
push eax ;i lpdwNumberOfBytesRead
push edi ; dwNumberOfBytesToRead = 0x00000TFF
lea eax, [ebp+804h+Buffer]
push eax ; lpBuffer
push [ebp+804h+hFile] ; hFile
loc_4O4FBS: ; CODE XREF: DownLoadConfig+E2Tj
call esi ; InternetReadFile
test eax, eax
jnz short IReadFile_|oop

Figure 4: C2 communication.

This bug is a classic case of CWE-787 where malware writes data past the end of the buffer, which results in the corruption
of data, a crash, or code execution.

Bug 3: Detection of absent string in configuration without any action

The malware sample has another bug that crashes it if it’s not able to download data from the C&C or if it’s not able to
find a specific string (‘about’) in the downloaded data. In the code snapshot shown in Figure 5, the function
FindStrLocation finds the location of a string stored in the field variable. The code inside the if statement executes if the
string is found. The crashHere function is outside of the if statement but uses the return value of the strtok function. The
strToken variable will be NULL if FindStrLocation is not able to find the string and returns -/. This will crash the
sample.

v2 = DownLoadConfig((int)&uE, =(LPCSTR =)&u7, v8, vd, vle, vll, vz, vil3, vi4, vl5, vie, vi7, V1§, v19);
LOBYTE(v20) = 3;
sub_401704(&u14, (void =)u2);
sub_4013B4(&u6, 1, 0);
LOBYTE(u20) = 0;
sub_4013B4(&u7, 1, 0):
U3 = FindStrLocation((int)&ul4, (const char =)field, 0);
if ((u3 t= -1)
(

sub_40133E(@, v3 + 8);

vl = ulh;

if (v19 < 0x10)

uY = (char =)&ul4;

strToken = strtok{u4, uS);
}
crashHere(&duword_486078, strToken); |
sub_4013B4(&ulk4, 1, 0);

Figure 5: C2 response parsing.

Here, we refer to CWE-390, where the malware detects an error but doesn’t perform any action to prevent the consequences
of the error, which may result in sample crashing.

CASE STUDY 2: WIN32.DOWNLOADER.RUGMI - INCORRECT CALCULATION OF
BUFFER SIZE

Rugmi is a downloader which has been seen downloading RATS, e.g. Remcos, and other malware. We saw 17 samples of
this malware showing execution errors during a campaign that was active from February to March 2021. This malware
usually downloads a PNG file from i[.]Jimgur[.]Jcom, which contains configuration data and a payload file. The data inside
the PNG file is compressed and encrypted. The decryption logic assumes that the size of the uncompressed data will be
four times the size of the file, so it allocates memory according to that (see Figure 6).

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

push es1

call eax ; GetFileSize
mov ebx, eax

call GETDLL

push esi

mov edx, ©B@9315F4h

mov ecx, eax

call GETAPI

call eax ; CloseHandle
test ebx, ebx

jz short loc_49E76C1

lea esi, ds:e[ebx*4] ; FileSize*4
test esi, esi

jz short loc_49E76C1

call GETDLL

mov edx, 9CEOD4Ah

mov ecx, eax

call GETAPI

push <

push 3806h

push esi

push 2]

call eax ; VirtualAlloc
mov esi, eax

Figure 6: Calculation of buffer size.

The malware allocates a buffer four times its size, but sometimes the size of the decrypted file is bigger than that. In such
cases, the malware crashes when trying to extract the embedded data due to buffer overflow (see Figure 7).

BLU9E77ED 8BF1 MOU ESI ,ECX

BLHOETT7EF 90 HOP

B49E77F 8 8AG8 MOU CL,BYTE PTR DS:-[EAX]
Bu9E77F2 8D4B 63 LEA EAX,DWORD PTR DS:[EAX+3]
8808C1A /MOU BYTE PTR DS:[EDX+EBX],CL
BLOET77F8 12 INC EDX

B49E77F9 83EE @1 SUB ESI 1

BU9ET77FC|™ 7S F2 JHZ SHORT BM9E77F 0

B49E77FE 8B4D FC MOU ECX,DWORD PTR SS:[EBP—4]
BH9E78O01 8BA4S Fh HMOU EAX,DWORD PTR SS:[EBP-C]
ALOoOF7R 0k a7 THIE FNT

<

lAccess violation when writing to [04BFEQ00] - use Shift+F7/F8/F9 to pass exception to program

Figure 7: Access violation during decryption.

We map this bug with CWE-131. Such bugs may lead to an out-of-bounds read or write, possibly causing a crash, allowing
arbitrary code execution, or exposing sensitive data.

CASE STUDY 3: WIN32.TROJAN.BUERLOADER - LOADING UNVALIDATED RESOURCE
LOCATION TABLE

Buerloader is a first-stage malware, active from mid-2019 and seen in the wild downloading other ransomware and
banking malware. In June 2020, we came across an interesting variant of Buerloader which was crashing during its
execution. We found 19 samples of this variant showing similar behaviour and all were leading to crashes due to
similar bugs.

For installation, this sample drops itself in the %PROGRAMDATA % folder and starts a new instance with following
command-line parameters:

C:\ProgramData\Ostersin\gennt.exe "<initial file location>" ensgJdJ

It starts the secinit.exe legitimate process in suspended mode using the CreateProcessW API. It allocates new memory in
the target process and writes DLL and initialization code for DLL using the VirtualAlloc and WriteProcessMemory APIs,
respectively. Finally, it starts a remote thread using the RtlCreateUserThread API.

The DLL initialization code performs the following actions:
1. Fixes the DLL offset using the relocation table in the PE header.

2. Parses the import table of the DLL and loads the DLLs mentioned in the import table using the LdrLoadDIl
Windows API.

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

LEA EAX,DWORD PTR SS:-[ESP+34]

PUSH EaAX

MOU EAX ,DWORD PTR DS:-[ESI+C]

CALL EnAX ntdll .RtlInitAnsisString
PUSH 1

LEA EAX,DWORD PTR SS:[ESP+34]

PUSH EAaX

LEA EAX ,DWORD PTR SS:[ESP+28]

PUSH EaX

MOU EAX ,DWORD PTR DS:[ESI+18]

CALL EAX ntdll _.RtlAnsiStringToUnicodeStri
LEA EAX ,DWORD PTR SS:-[ESP+14]

PUSH EAX ModuleHandle

LEA EAX,DWORD PTR SS:-[ESP+24]

PUSH EaAX ModuleFileName
MOU EAX ,DWORD PTR DS:-[ESI+14]

PUSH © Flags

PUSH © PathToFile

'CALL EAX 'ntdll.LdrLoadDll

I FrA CFAY RILWAAGAR DBYOD O FCCD . SSa%

Figure 8: DLL initialization code.
3. Builds the import table using the LdrGetProcedureAddress API.
4. Calls the entry point of the DLL.

The issue here is that the DLL file is compiled with IMAGE_FILE_RELOCS_STRIPPED, meaning it can’t be loaded on
any random address, so it crashes on loading.

* Fe 8 JB SHORT gennt_40003B32
8B81 ANGOAOO6 HOU EAX,DWORD PTR DS:[ECX+AB8] Reloc table RUA
83c7 ADD EAX,EDI Reloc Table absolute address
897D BC MOU DWORD PTR SS:-[EBP- .EDI Base Address of PE to Inject
8945 CO HOU JEAX
8B81 8000HOOO MOU EAX,DWORD PTR DPS:[ECX+89]
B83cCc7 ADD EAX,EDI
R T Ll ™ ATV B e T Lol o o o 2l 2 Tl] L L "
188]=00000000
FBB
Hex dump pata Comment
90000000 |DD ©O0000008 Relocation Table address = @

00000000 DD 99000008 Relocation Table size = 9
RAF1 06806 Nnn AAAArF1PR N NDNebhbwnn Data addrec<s F1R A

Figure 9: Relocation table parsing.

The code shown in Figure 9 indicates that the injector doesn’t check whether the relocation table address is present in the
PE header. This results in incorrect relocation calculations when the DLL initialization code loads the DLL in the target
process.

According to MSDN [2], if relocation information was stripped from the file, then the file must be loaded at its preferred
base address. If the base address is not available, the loader reports an error. This bug falls under CWE-913, which relates
to improper control of dynamically managed code resources, in this case the relocation table.

CASE STUDY 4: WIN32.PWS.OSKI - INCORRECT CHECK OF FUNCTION RETURN VALUE

Oski, introduced in 2019, is a piece of malware with the capability of stealing personal and sensitive information from a
victim’s system [3]. The name ‘Oski’ is derived from an old Nordic word meaning Viking warrior, which is quite fitting
considering this popular info-stealer is extremely effective at pillaging privileged information from its victims.

It also steals passwords stored in Google Chrome. It copies the ‘Login Data’ file from the location ‘@LOCALAPPDATA %\
Google\Chrome\User Data\Default’ in ‘C:\ProgramData\<InstallFolder>\tmp’. The Login Data file is a SQLite database and
the malware extracts the following information from the login table: origin_url, username_value and password_value (see
Figure 10).

This malware uses SQLITE3.DLL APIs for extraction of the information from the login table. It uses the following
APIs: sqlite3_open, sqlite3_prepare_v2, sqlite3_step, sqlite3_column_text and sqlite3_column_bytes. It uses the
sqlite3_column_text API to extract the data from the first two columns. For the ‘password_value’ column it first checks
the available data length using sqlite3_column_bytes (see Figure 11).

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

- DL T e = A Tror L =Ll TS Tr Irs e b i et d w4

- 8955 E@ MOU CLOCAL.Z2831 « EDCX

- SD4S B4 LEA EAX, CLOCAL.19]

- S8 PUSH ERX

. 8DSD R4FEFFFF LER ECX, [LOCAL.871

. 51 PUSH ECH

- FF15 S8273e01 CALL DWORD PTR DS:L[13627581 | salite3.salite3_open

: 83C4 BsS HADD ESF,

- g5Cce TEST ERX.ERX

.~ BFSS ARB40008 JHZ _83CDe9a.8134E613

- &6A B8 PUSH ©

. 8055 AC LEA .Egﬁ,_:um. 211

>
TE0I=6096 1 (=qlite=.=qllilte=_open)
L ' !
orlaln_url. username uUalue. Dassword Ualue FROM lodains.--
L - eL"y +SE C ST_KEY. i htrtpon ly, path,

b B o a3 L ' . LECT HO

Figure 10: SQL query for extracting passwords.

| push 2 ; column ID = 2
mov eax, [ebp+psglite3_stmt]
push eax
call sglite3_column_bytes
add esp, 8
push eax ; Size
push 2
mov ecx, [ebp+psqlite3_stmt]
push ecx
call sqlite3 column_blob
add esp, 8
push eax 5 Src
lea edx, [ebp+decryptBuffer]
push edx ; int
call DecryptData
add esp, 14h

Figure 11: Code to extract and decrypt password.

As is clear from the code snapshot in Figure 11, it does not verify the return length from the sqlite3_column_bytes API.
Now, if the ‘password_value’ column is NULL, the sqlite3_column_bytes API will also return Null, which will result in the
sqlite3_column_blob API returning a NULL pointer. The same NULL pointer will be used in the DecryptData function,
causing the application to crash due to the null data reference exception. So we can create a kill-switch for this malware by
inserting dummy data and keeping the ‘password_value’ as NULL in the ‘Login Data’ file using tools like DB Browser for
SQLite [4] or using the APIs from SQLITE3.DLL. We found a couple of Oski samples that had similar bugs.

This bug is covered under CWE-253, in which an unexpected return value may result in a crash or the exit of the malware.
Normally, a stealer expects a username & password pair to exist in the browser database. But a user can create an entry
with an empty password, which will act as a kill-switch which may stop a stealer with this bug.

CASE STUDY 5: MULTIPLE MALWARE FAMILIES - INCONSISTENT INTERPRETATION OF
HTTP RESPONSE HANDLING FOR RELATED APIs

We encountered multiple samples where the HTTP response from threat actor-controlled systems is not validated and
received data is used directly by the malware, leading to a crash. A number of bugs in different APIs are described in the
following sections.

Bug 1: Win32.Downloader.Penguish - no check for InternetReadFile APl output

This is a downloader sample and it shows an execution error when it encounters an unexpected HTTP response from the C2
server as it doesn’t validate the C2 response read through the InternetReadFile Windows API. We found 100+ similar
samples from this family.

The C2_Communication function (see Figure 12) uses InternetReadFile for downloading C2 data. This function returns a
value of 1 if it is able to download the C2 data and O otherwise. The downloaded data and size of data is stored in the
ptr_structinternetData.ptr_C2DataFull and ptr_structinternetData.dwSizeOfc2Data pointers, respectively.

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

if (tptr_c2Data)

BuildMachineID(sz);
uEe = xmmword_34D800;
u? = 35;

u3 = Decrypt_C2_path(&uB);
wsprintfA(byte_388800, (LPCSTR)v3, sz);
*(_QWORD =)&u6 = 8532196438026516344i6Y4;
DWORD2(vE) = 2053405564 ;

WORDB(vE) = 31356;

BYTE14(uE) = @;
ptr_structInternetData.ptr_unkun2 =
ptr_structInternetData.c2portNumber =
ptr_structInternetData.ptr_ToC2Path =
ptr_structInternetData.flagl = 1;
C2_Communication(&ptr_structInternetData);

vz = sz;

ptr_C2Data = (char =)ptr_structInternetData.ptr_C2DataFull;

*(_BYTE =)(ptr_structInternetData.dw$ize0fc2Data + ptr_structInternetData.ptr_C2DataFull) = @;

sub_361AB5(&U6) ;
8055;
(int)byte_388800;

}

BuildMachineID(uv2);

memmove_0{ &opyOF_structInternetData, &ptr_structInternetData, 0x20u);
CopyOF _structInternetData.ptr_PingStr = (int)ul;

CopyOF _structInternetData.pingStrLen = strlen((const char =)ul) + 1;
sub_3689CT();

C2_Communication(&Copy0OF_structInternetData);

sub_3689CT();

return CopyOF _structInternetData.ptr_C2DataFull;

a1 TT =20

Figure 12: C2 communication.

Figure 12 shows the pseudocode of the function. As you will see, there is no check for a return value from the
C2_Communication function and it tries to modify the data stored in ptr_C2DataFull (as highlighted in Figure 12), but if
there is no data available then it will crash due to a null reference exception.

Bug 2: Win32.Downloader.Glupteba - no check for URLDownloadToFile API output

This is a downloader which downloads the well-known malware Glupteba. This sample calls the URLDownloadToFile API
to download samples and the C2_Talk function to download C2 data. A code snapshot is shown in Figure 13.

lea ecx, [ebp+C2_Data] push edi
; } // starts at 403D@8 mov edi, edx
; tr‘y { mov esl, ecx
xXor ecx, ecx
Z:;l ggtiagﬁr [ebp+var_4], 15h leah eax, [ebp+arg_e]
— pus acx
lea edx, [ebp+C2 Data] mov [ebp+var_4], ecx
5 } // starts at 483D25 cmp [ebp+arg_14], 1@h
;o try { push ecx
mov byte ptr [ebp+var_4], 17h cmovnb eax, [ebp+arg @]
lea ecx, [ebp+DecryptedData] push ST
call DecryptData 9“5: gax
. add esp, 18h z:il ;::_URLDownloadToFileA
H } // starts at 4e3D34 mov G Tee
3 try { push 3E8h ; dwMilliseconds
mov byte ptr [ebp+var_4], 18h call ebx ; Sleep
mov ecx, esp ; this push ecx
lea eax, [ebp+DecryptedData] mov edx, edi
push eax ; Src mov ecx, esi ; lpFileName
and dword ptr [ecx+18h], © ;3;1 2:2—863357
anil d:grd Et? [ecx+14h]% @ push 64h ; 'd’ ; dwMilliseconds
ca Std__string__copy_ctor call ebx ; Sleep

Figure 13: Downloading payload.

However, it doesn’t check for return values for the URLDownloadToFile API and the C2_Talk function. If the malware
payload is not available or the C2 response does not result in the desired output, it crashes the sample.

Both above bugs described here are related to the misinterpretation of HTTP response, which falls under CWE-444. These
pieces of malware expect a specific response from the C2 server, but cannot handle invalid responses.

CASE STUDY 6: WIN32.BACKDOOR.EMOTET - WILDCARD SEARCH OF DLL WITH A SINGLE
CHARACTER

Emotet, a famous malware-as-a-service (MaaS), was first seen in 2014. It was mainly spread through malspam and is
known as a strain of banking trojan. It was taken down by law enforcement agencies in January 2021. In Zscaler Cloud

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

Sandbox, we found a few Emotet samples which had a very critical issue in the logic they used to get the address of system
DLLs. We found 318 Emotet samples showing execution errors due to different types of bugs, as explained below.

One of the samples, spotted in August 2020, has an issue in the logic it uses to get the address of the NTDLL.DLL system
DLL. It uses Process Environment Block (PEB) to get the image base of the required DLL and then uses a custom
GetProcAddress-like function to retrieve the address of an exported function from the DLL.

int __cdecl GetModHandle(unsigned

_ _int16 =dllName)
{

int PEB_offset; // ST10_4@1
int InLoadOrderModulelListBase; // [sp+8h] [bp-18h]@1
int InLoadOrderModuleListCurrent; // [sp+Ch] [bp-4h]@l

PEB_offset = »(_DWORD =)(__readfsdword(0x30u) + 0xC);
InLoadOrderModuleListBase = =(_DWORD =)(PEB_offset + 8xC);
InLoadOrderModulelistCurrent = =(_DWORD =)(PEB_offset + 0xC);
do

if ('CompareBaseDLLName(*(unsigned __int16 =x)(InLoadOrderHoduleListCurrent + 0x30), dllName))
return =(_DWORD =)(InLoadOrderModulelListCurrent + ©x18);// Return DLL Base Address
InLoadOrderModulelListCurrent = ([_DWORD x)InLoadOrderModuleListCurrent;

while (InLoadOrderModulelListCurrent != InLoadOrderModulelListBase);
return 9;

Figure 14: Code to get module handle of NTDLL.DLL.

As can be seen in the pseudocode in Figure 14, it uses InLoadOrderModuleList to get the base name of the module and
compares only the module name, not the extension. Now, if the current process name is ntdll.exe, it will be at the top of the
list in InLoadOrderModuleList.

The other interesting thing in the Emotet installation logic is that it chooses a file name randomly from the files in the
%SYSTEM32% folder and copies itself with that name to the SYSWOW64 folder. It uses the SHGetFolderPathW API with
CLSID as CSIDL_SYSTEMXS6 to get the full path. This directory also contains the NTDLL.DLL file, so the ntdll.exe
process name is possible, and in that case it will crash because the malware payload doesn’t have an export table and the
custom GetProcAddress function doesn’t verify whether the module contains an export table and tries to read unavailable
memory area.

A similar issue was found in another sample but for a different DLL. Here, if we change the file name to anything that starts
with ‘K’ it will result in the crash. Here also, the issue lies in the logic that extracts the image base of KERNEL32.DLL.

PEB offset = *(DWORD *) (readfsdword(0xz30u) + 0xC);
InLoadOrderModulelListBase = *(DWORD *) (PEB offset + 0xC);
InLoadOrderModuleListCurrent = *(_DWORD *) (PEB_offset + 0xC);
while (1)
{

v4 = hashKey;

DLL Base Name = wcslwr (*(wchar t *¥*) (InLoadOrderModuleListCurrent + 0x30));// DLL Base Name

char dllName = *(_BYTE *)DLL Base_Name;
i=v4

while (char dllName)

{

| i = char dllName + 0x32 * i; //Calculate hash 1

char dllName = *((_BYTE *)DLL_Base_ Name + 1);

| DLL Base Name = (wchar t *) ((char *)DLL Base Name + 1) //Next char | 2

}

| if (1 == dllNameHash) | 3
break;
InLoadOrderModuleListCurrent = * (_DWORD *)InLoadOrderMeduleListCurrent;
if (InLoadOrderModuleListCurrent == InLoadOrderModulelistBase)
return 0;
}
return *(DWORD *) (InLoadOrderModuleListCurrent + 0x18); //Return Image Base

Figure 15: Code to get module handle of KERNEL32.DLL.

Similar to the earlier issue, it uses InLoadOrderModuleList to get the base DLL name. The base name is converted to
lowercase and a hash is calculated (point 1 in Figure 15) using all the characters in the DLL name. The DLL name is a
wide-character string, so to get the next character, you have to add two bytes to the base pointer. However, in the code only
one is added (point 2 in Figure 15). This results in the loop exiting just after the first character (point 3 in Figure 15). And it

10

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

will return the image base even if only one character matches. This results in a crash if the process name starts with ‘K’
because it also uses a custom GetProcAddress similar to the one mentioned above.

During our more in-depth research, we found a similar issue in another sample that uses the same logic for extracting the
image base of NTDLL.DLL, so in this case if the sample name starts with ‘N’, it will crash the sample.

In all three samples, we found an incomplete comparison for different DLL names. Such bugs are covered under
CWE-1023 and may lead to altered execution logic, bypass of protection mechanism, etc.

CASE STUDY 7: WIN32.PWS.RACCOON - USE OF FUNCTION WITH INCONSISTENT
IMPLEMENTATIONS

Malware samples are usually packed using unknown packers. This helps the malware to avoid detection. Sometimes,
however, it can also result in the failure of the malware installation or impact other functionality. We saw as example of this
in a variant of the Raccoon malware. Raccoon stealer [5] is a type of malware focused on gathering sensitive information
from the infected system. This malware is also known to steal financial and user-specific information.

One of the information-stealing capabilities of Raccoon is to extract and steal credentials stored by Internet Explorer.
Starting with Windows 7, Internet Explorer stores sensitive information including passwords in the Windows Vault [6]. To
extract the passwords from the Vault, this malware uses different APIs (VaultOpenVault, VaultCloseVault,
VaultEnumerateltems, VaultGetltem and VaultFree) from VAULTCLI.DLL.

There is a change in the VaultGetltem API starting from Windows 8, so you have to check the version of the OS before
using the correct version of the APIL. This malware uses the GetVersionExW API to get the OS version details (see Figure
16). It checks for the major version to be 6 and the minor version to be 2 or greater.

mov [ebp+VersionInformation.dwOSVersionInfoSize], esi
lea eax, [ebp+VersionInformation]
push eax ; lpVersionInformation
call ds:GetVersionExW
cmp [ebp+VersionInformation.dwMajorVersion], 6
jnz short loc_427811
cmp [ebp+VersionInformation.dwMinorVersion], 2
mov [ebp+bWin8erGreater], 1
jnb short loc_427814

; CODE XREF: GotoCrash+551j
mov [ebp+bWin8erGreater], bl

Figure 16: Code to get Windows version information.

However, as per MSDN documentation, the behaviour of this API has changed, starting from Windows 8.1. For applications
not manifested for 8.1 or Windows 10, this API will always return the Windows 8 OS version value (6.2). Since the original
Raccoon payload is not manifested for 8.1 or Windows 10, it works fine on Windows 10.

The packer used in the sample that we analysed was actually manifested for Windows 7, 8, 8.1 and 10 (see Figure 17).

<compatibility zmlns="urn:schemas-microsoft-com:compatibility.v1">
<application>

<!-- Windows 10 —->

<supported0S Id="{B8el0f7al2-bfb3-4feB-b9%a5-48£fd50al5a%a}" />
<!-- Windows 8.1 -->

<supported0S Id="{1f£676c76-80el-4239-95bb-83d0£6d0da78}"/>
<!-— Windows 8 —-—>

<supported0S Id="{4a2f2B8e3-53b9-4441-ba9%-d69d4adabe3B}"/>
<!-- Windows 7 —->

<supportedOS Id="{35138b9%a-5d96-4fbd-Be2d-a2440225£93a}"/>
</application>

</compatibility>

</assemblyj

Figure 17: Packer manifest file.

This packer injects the Raccoon payload into another instance of itself, so the GetVersionExW API will provide an accurate
version of the Windows OS, which will be 10 for major version and 0 for the minor version for Windows 10. The Raccoon
code is designed to check only the 6.2 version, and this will result in selecting the wrong version of the VaultGetltem API
and a crash. We found 1,000+ samples crashing due to this bug.

We consider this bug under CWE-474, which states that the code uses a function that has inconsistent implementations
across operating systems and versions. The common consequences of this bug may be high likelihood that a weakness will
be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

CASE STUDY 8: WIN32.RANSOM.SAPPHIRE - IMPROPER HANDLING OF INSUFFICIENT
PERMISSIONS OR PRIVILEGES

Ransomware is a type of malware that encrypts a victim’s files and demands a ransom from the victim to restore access to the
data upon payment. The Sapphire ransomware encrypts files with the .VIVELAG extension. It encrypts all files in the ‘C:\’
directory and skips files with the .VIVELAG extension. We encountered a couple of samples that were showing an execution
error.

We found a variant of this ransomware that doesn’t check the permission of directories before adding them to a list which is
later used to encrypt the files, and it causes a crash.
osoft.VisualBasic.FileI0.S
ith(".VIVELAG");

.Add(text);

enumerator;

(enumerator ull)

enumerato 0s

@ enumerator
L
@ fiag

Figure 18: Code to enumerate files in C drive.

As the code in Figure 18 shows, the malware enumerates all files and directories under the ‘C:\’ directory and adds the file
path in ListBox1. But during enumeration, the malware doesn’t check the privileges of the directory ‘Documents and
Settings’ and doesn’t handle the exception. This ransomware sample expects a list of files and folders to encrypt but it ends
up encrypting nothing. So, we can say that due to this bug, it is a variant of ransomware that doesn’t encrypt anything but
shows warnings of encryption and demands a ransom.

Vos Fichiers, Photos, Video on été encrypté par Dystic et toute la ligue anti gacha : (

Vus que je me suis levé du bon pied: je n’ai pas (encore) suprimé les données,
ils sont juste crypté dans un format illisible.

Pour les décrypter. Payer la ligue anti gacha 2508
en bitoins pour reg¢evoir une clé de déchiffrement unique et fidéle a ce pc via discord.

Si vous payez pas/utilisez un anti-virus/redémarrer le pc/Suprimer le logiciel, vos fichiers et données seront crypté a t

vive #LAG
Microsoft NET Framewerk
Decrypter-
. Unhandied exception has occured in your appiication. I you ciick
(%9 Continue. the appiication wil ignore this error and attempt to cortinue. F
you click Gui, the application wil close immeditely

Addresse bitcoin - 1399Zu6zdH3jUGIXakPKXmi2AWNwvhGAyh Cortinue

See the end of this message for details on invoking
justindime (JIT) debugging instead of this dialog bax

Access to the path C:\Documerts and Settings'is denied.

System.UnauthorizedAccess Exception: Access to the path T\Documents and Sef
i System 10.__Emor WinlOEor(int 32 emorCade, Sting maybeFulPath)

at System JO Directory Sting userPathO
c at System 10 Dirsctory GetFies(Sting path. String searchPattem, SearchOption sez
i orenes at System 10 Directory GetFies(Sting path)
i 2t Microsoft. VisualBasic.Filel0 FleSystem FindPaths (FileOrDirectory FieOrDirectory v
Application extens.. < >

Figure 19: Unhandled exception.

This bug can be used as a kill-switch for such ransomware by creating a directory under all drives with protected
permissions. If the ransomware doesn’t perform checks for permissions, it will end up doing nothing. We can see the

11

12

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

exception window and ransom banner in Figure 19. This ransomware disables task managers, so the victim can use a
third-party tool to kill the process showing the ransomware banner.

We class this bug under CWE-280, in which a program doesn’t handle, or handles incorrectly, insufficient privileges to
access resources or functionality as specified by their permissions. This may cause it to follow unexpected code paths that
may leave the application in an invalid state.

CASE STUDY 9: MISCELLANEOUS

In this section we present different case studies which have different types of bugs, e.g. improper check of downloaded
data, improper check of exported function by a DLL, and try to perform different types of operation on that data.

1: Malware name: Win32.Trojan.Agent

This sample is a component of another piece of malware and is used to load a dropped DLL and execute the exported
function rtrrirtrtrt. But as is clear from the code shown in Figure 20, it doesn’t verify the return values from APIs and
crashes if the DLL is not present or the export function is not found.

push ebp

mov ebp, esp

push ecx

push offset ProcName ; "rtrrtrtrtrt"
mov eax, 4

shl eax, @

mov ecx, [ebp+arg 4]

mov edx, [ecx+eax]

push edx ; lpLibFileName
call ds:LoadLibraryll

push eax ; hModule

call ds:GetProcAddress

mov [ebp+var_4], eax ; No return value check
mov eax, 4

shl eax, 1

mov ecx, [ebp+arg 4]

mov edx, [ecx+eax]

push edx

call [ebp+var_4]

Figure 20: Calling export function of DLL.

2: Malware name: Win32.Downloader.RemcosRAT

This is a downloader sample, it downloads encrypted payloads from cdn[.]discordappp[.]Jcom and drive[.]google[.]Jcom.
The downloader is compiled in Delphi and has a malicious DLL file embedded that it loads in memory. This DLL file
actually downloads the encrypted payload, decrypts it, and loads it. It uses simple XOR-based decryption logic (see
Figure 21).

mov eax, [ebp+DecryptionKey]
call sub_694698

test eax, eax

jle short loc_6A356C

mov eax, [ebp+DecryptionKey]
call sub_694698

push eax

mov eax, ds:dword_6A68FC

pop edx

mov ecx, edx

cdq

idiv ecx

inc edx

mov eax, [ebp+DecryptionKey]
mov al, [eax+edx-1]

xor al, [edi]

mov [edi], al

Figure 21: Decryption logic.

The decrypted payload should be a PE file. It extracts the information of important fields (like Image size) from the PE
header and allocates memory according to that.

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

However, we found it crashing in the sandbox. The reason for the crash is that it does not check whether the decrypted
payload is a PE file or not. It just tries to parse the junk data as a PE file and crashes (Figure 22).

= nm‘i

PUSH @

EAX, DWORD
HUgHEQX » DWORD

MCI&D PTR DS: [6768981, EAX

PTR DS: [&676898]
PTR DS:[EAX+50]

PE Header Pointer

SizeOf Image

CALL ©95664ES JHP to KERHEL3Z2.VirtualAllod
MOU NWNRN PTR NS:TA7ARIAT . FAX
[Hex _dume 11
p< EA 50 08 B2 96 08 0B [ETz] [ETs) <FP.0
E4|BE 60 808 08 86 88 88 a8 a8 OBl ccensss
4|96 88 808 00 86 08 88 a8 a0 B s s s sne
Bl oG 08 08 0D 0GB 08 88 0B 2 28 1| [
i14|BA 18 88 BOE 1F B4 89 CD 2 4C SAajll p. AV T OL=t&
E4| 54 68 69 73| 20 706 e 6F| & aD r23| This program Mus
B4 74 7 6E| 28 7E &4 S7lt be run under W
B4 69 a2 37 08 06 =1z B9 In32. 37 cccncas
B<| 8@ BE 08 88 88 a8 BP)] csssnssssassssans

3: Win32.Backdoor.RemcosRAT -

Figure 22: PE loader.

invalid memory access to load resource

RemcosRAT emerged in 2016 and gives threat actors complete control over the target system. It can steal data, keys and
digital wallets and can run surveillance, e.g. audio or screenshots.

We found this sample in February 2021 and it was showing execution errors. Upon analysis, we found a bug in the code
where it doesn’t verify the return value from different API calls. Basically, it loads the configuration data from the resource
section of the executable but doesn’t check whether the resource is present (Figure 23).

PUSTT E0p

mov ebp, esp

push esi

push edi

push 8Ah ; 1pType

push offset aSettings ; "SETTINGS"

push 8 3 hModule

call ds:FindResourceA ; No return Code check
mov edi, eax

push edi ; hResInfo

push e ; hModule

call ds:LoadResource ; No return Code check
push eax 3 hResData

call ds:LockResource ; No return Code check
push edi ; hResInfo

push] ; hModule

mov esi, eax

call ds:SizeofResource

mov ecx, [ebptarg_8]

pop edi

mov [ecx], esi

Figure 23: Code to load configuration data from resource section.

After loading the data it tries to decrypt the malware configuration and access memory location which leads to the crash

(Figure 24).
call load_resource
mov [ebp4Size], eax
mov eax, [ebp+var_8]
movzX
push ebx
call ds:malloc

ebx, byte ptr [eax] ; Crash here
; Size

Figure 24: Memory allocation.

This bug is also covered under CWE-253, in which a function return value is not validated properly, causing the malware

sample to crash.

14

BUGS IN MALWARE - UNCOVERING VULNERABILITIES...

CONCLUSION

In this research, we looked at multiple examples of malware with different types of vulnerabilities which cause crashes and
also provide opportunity for a user to use them as a kill-switch. We tried to classify all the bugs using MITRE’s CWE list,
which makes it easy to get a more detailed definition and consequences of bugs. This study includes a broad range of
malware from stealers and downloaders to ransomware. This research shows that malware code often contains multiple
bugs and indicates that no proper quality assurance checks are performed on malware code. Security vendors can leverage
these bugs to write different types of signatures to identify and block such malware attacks.

REFERENCES

[1] CWE Common Weakness Enumeration. CWE VIEW: Software Development. https://cwe.mitre.org/data/
definitions/699.html.

[2] Microsoft. IMAGE_FILE_HEADER structure (winnt.h). May 2018. https://docs.microsoft.com/en-us/windows/
win32/api/winnt/ns-winnt-image_file_header.

[3] Cohen, B. Meet Oski Stealer: An In-depth Analysis of the Popular Credential Stealer. Cyberark.
https://www.cyberark.com/resources/threat-research-blog/meet-oski-stealer-an-in-depth-analysis-of-the-popular-
credential-stealer.

[4] DB Browser for SQLite. https://sqlitebrowser.org/.

[5] Analyzing the Raccoon stealer. Cyberark. https://lp.cyberark.com/rs/316-CZP-275/images/CyberArk-Labs-
Racoon-Malware-wp.pdf.

[6] Haephrati, M. The Secrets of Internet Explorer Credentials. Code Project. January 2017.

https://www.codeproject.com/Articles/1167943/The-Secrets-of-Internet-Explorer-Credentials.

https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_file_header
https://cwe.mitre.org/data/definitions/699.html
https://www.cyberark.com/resources/threat-research-blog/meet-oski-stealer-an-in-depth-analysis-of-the-popular-credential-stealer
https://sqlitebrowser.org/
https://lp.cyberark.com/rs/316-CZP-275/images/CyberArk-Labs-Racoon-Malware-wp.pdf
https://www.codeproject.com/Articles/1167943/The-Secrets-of-Internet-Explorer-Credentials

