
CTO (CALL TREE OVERVIEWER): YET
ANOTHER FUNCTION CALL TREE VIEWER
Hiroshi Suzuki
Internet Initiative Japan, Japan

7 - 8 October, 2021 / vblocalhost.com

www.virusbulletin.com

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

2 VIRUS BULLETIN CONFERENCE OCTOBER 2021

ABSTRACT

CTO (Call Tree Overviewer) is an IDA plug-in designed to display an overview of function call relationships.

When we analyse malware, we tend to lose track of which function we are investigating because there are thousands of
functions in a binary file. We also need to find out what path the function we are investigating took to get to this place, but
if the function location we are looking into is very deep, it can be tedious to follow the path manually. This is why we need
function call trees and path explorers.

CTO is a field-oriented and practical tool that is designed to solve some disadvantages of IDA. It is able to display not only
the function call tree as a graphical user interface including internal function calls and API calls, but also referred strings
and repeatable comments, which are normally input by a user, if necessary, so that, in one view, you can instantly recognize
the relationships between functions and important clues in the currently displayed function.

In addition, it is docked next to the IDA Pro disassembly view by default. If you click on a caller or a callee node on the
tree graph, the address on IDA View will automatically be synchronized with it, and vice versa. By default, static linked
libraries, which it is not commonly necessary to look into, and very deep function calls are collapsed to avoid
overcomplicating the graph – but you can, of course, dig deeper or filter them out. You can find paths between two given
functions as well. Every feature on this tool has its own shortcut key, so that you can handle the tool quickly.

1. MOTIVATION

There are already two features related to function call tree graphs in IDA Pro. One is the ‘Graphs’ or ‘Chart’ feature, and
the other is called ‘Proximity Browser’. Given the existence of these, why did I decide to develop this plug-in? Let me
explain.

The ‘Graphs’ or ‘Chart’ feature does not generate clickable graphs and lacks a path filter feature because it generates a
graph using a modified version of WinGraph1.

Figure 1: Graphs feature.

Meanwhile, ‘Proximity Browser’ is a more sophisticated feature. You can click nodes and there is a filter feature as well as
a path discovery feature.

1 Hex-Rays provides the source code of it at [1].

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

3VIRUS BULLETIN CONFERENCE OCTOBER 2021

However, it is still not suitable for grasping the whole picture of the relationships because it tends to follow unnecessary
paths and xrefs, and the area per node is large.

Figure 2 shows a comparison of CTO (on the left) with Proximity Browser (on the right) at the same address. As you can
see, Proximity Browser traced unnecessary nodes.

Figure 2: CTO vs Proximity Browser.

In the graph shown in Figure 3, you can also see that Proximity Browser shows four paths, while IDA’s xrefs window
shows only one xref.

Figure 3: Unnecessary xrefs shown by Proximity Browser.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

4 VIRUS BULLETIN CONFERENCE OCTOBER 2021

Furthermore, by default Proximity Browser always displays all types of nodes, including strings or global/static variables,
not only functions. Large numbers of nodes makes it difficult to understand the relationships. If we were to dig into several
nodes, the graph would be too complex.

In addition, with Proximity Browser we cannot create a graph to f ind paths to a pointer on IAT, although it can create paths
from a general function pointer. This was also a motivation for me to create the plug-in.

It was these problems that led me to develop CTO.

2. INTRODUCING CTO

2.1. What is CTO?

CTO is an abbreviation for Call Tree Overviewer, which is mainly designed to create a function call tree.

Figure 4: CTO (Call Tree Overviewer).

I implemented not only a function call tree creation feature, but several malware analysis techniques, such as creating a
function summary from API calls and strings to rapidly identify the function’s role, finding paths based on the target
address, and creating a tree with least nodes.

This is the current list of elements that CTO can extract from functions for a function summary:

• Function calls / function pointer references

- General functions

- APIs

- Static linked libraries

- Unresolved indirect calls

• Global static variables references

• Strings references

• (Possible) structure offset references

• Repeatable comments

• Specific general comments (with keywords for third-party tool corroboration)

Of these, only function calls are displayed as nodes by default. This is because, to be a practical tool, I think the most
important point is to keep the graph simple but sufficient. If you want to grasp function relationships, you will not need
such detailed information. That is why, by default, CTO displays only function call related nodes.

On the other hand, if you display all types of nodes and cut other parent and grandchild nodes, you will be able to focus on
a function. Depending on your requirements, CTO can easily hide and unhide additional nodes with a shortcut key.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

5VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 5: A string as a node.

In Figure 5, you can see CTO shows us the string ‘lsass.exe’ as a node. If you click the node on CTO, IDA View will move
to the address where the string is referred. Then you can see the disassembled code around the address. The function clearly
indicates that it finds the ‘lsass.exe’ process in the process list.

2.2 Function summary

Even if you do not display additional nodes such as strings and global variables, you can still access a function summary as
a node hint by pointing the mouse cursor on a function node.

Figure 6: Node hint.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

6 VIRUS BULLETIN CONFERENCE OCTOBER 2021

However, a node hint is not clickable. You cannot directly access the information on it. Therefore, I implemented a
‘print hint’ feature as well, which dumps the information to the output window. Then you can access the information by
double-clicking a function name or an address on it.

Figure 7: Dumped function summary.

2.3 CTO function lister

You can also use a helper list widget called ‘CTO function lister’ to access a function summary. The widget can be used as
a standalone tool as well, but it is designed to help CTO. You can access the same information as a node hint. You can also
use a regex filter on it to easily find information that you want to know, like which function calls CreateProcessW or which
function accesses a structure offset.

Figure 8: CTO function lister.

2.4 Keep the graph simple

As I mentioned earlier, Proximity Browser and the Chart feature on IDA show us unnecessary xrefs such as unwind
information and static linked libraries. They increase the number of nodes and make it difficult to understand the
relationships due to the complexity.

In order to keep the graph simple, CTO does not show unnecessary xrefs, although you can check all xrefs with a shortcut key.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

7VIRUS BULLETIN CONFERENCE OCTOBER 2021

CTO also stops tracing if it finds a function related to a static linked library, although you can still dig into it manually by
expanding a collapsed node.

Figure 9: Exceeded nodes.

You can see two ‘...’ nodes in Figure 9. They are called the path exceeded nodes. You can double-click them to expand if
you want to dig into them.

In addition, CTO omits many parent nodes not related to the paths to the target address, although you can easily include all
the omitted nodes with a shortcut key. If you compare Figure 10 with Figure 9, you can see many functions under the
parent nodes. CTO omits them by default because if you want to check only paths related to the target function, they are
unnecessary. However, if you want to include them, you can easily display the nodes with a shortcut key.

Figure 10: Showing child nodes in parent functions.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

8 VIRUS BULLETIN CONFERENCE OCTOBER 2021

CTO has several options such as ‘Go to start node’ and ‘Jump to a node’ in order to avoid to getting lost in a graph with
many nodes. The former can immediately go back to the start node that you chose when you created the CTO graph. The
latter can find a node from a list using a keyword such as a partial function name, a partial address and a node type, and so
on, and jump to the node.

You can also get the opposite side of a node by double-clicking the edge, which is an arrow shape, like in IDA View.
And you can get next-to-node information by placing the cursor on an arrow or a node since the hint will also be
displayed.

2.5 Synchronizing with IDA View

To be a field-oriented tool, I think usability is important. Let me explain.

For usability, CTO will be docked next to IDA disassembly view (or IDA View) by default. You can check code around the
address in IDA View as soon as you click a node corresponding to the address on CTO and vice versa, since CTO and IDA
will be synchronized with each other.

2.6 Callee-Caller mode

As you have seen in CTO’s graphs so far, you can check each caller address in a function as well as the callee functions.
Caller addresses help you rapidly understand what role their parent function has. Of course, you can omit caller nodes if
they are unnecessary, as in Figure 11. Then the graph will be simpler. You can toggle the modes with a shortcut key.

Figure 11: Pure function call graph.

2.7 Shortcuts redirecting to IDA

You can access several IDA shortcuts, which are often likely to be used while you are focusing CTO’s window, for
example, renaming a function name, checking xrefs, applying a structure to an offset and so on, by redirecting the key input
to IDA. You do not have to click on the IDA screen every time you want to use them.

2.8 Function call paths graph

Although IDA’s Proximity Browser can create a function call paths graph, it cannot create a graph based on an API pointer
on the import table like CreateFileA or CreateProcessW. Since it is very important for reverse engineers to check important
APIs, making such graphs was one of my motivations to create the new tool.

CTO creates a call paths graph as a subgraph in a new tab so that you can keep the current graph you are looking into while
you are checking other paths or nodes. Figure 12 shows a graph based on CreateFileW.

2.9 Third-party tool corroboration

CTO collects specific comments. If a tool outputs its result as a comment, CTO can recognize it. Currently, it collects the
outputs of the tools below:

• findcrypt.py [2]

• ironstrings [3]

I will extend this in the future.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

9VIRUS BULLETIN CONFERENCE OCTOBER 2021

In Figure 13 you can see that CTO recognizes a stack string identified by ironstrings as a node.

Figure 13: Tool corroboration.

3. HOW CTO WORKS, INSIDE CTO

3.1 Core structures of CTO

In order to synchronize with IDA View, CTO utilizes two hooks:

• UI hooks (UI_Hooks class)

• View hooks (View_Hooks class)

UI hooks and view hooks are in ida_kernwin.py.

Figure 12: Find paths to CreateFileW.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

10 VIRUS BULLETIN CONFERENCE OCTOBER 2021

CTO also inherits the graph viewer class (GraphViewer class) in ida_graph.py.

Since IDA’s GUI-related APIs are in these two modules, if you want to create a GUI-based IDA plug-in, you should look
into them first.

3.2 UI_Hooks class

You can catch all UI events, which are called ‘actions’ by Hex-Rays, by inheriting this class. You can observe actions not
only on your widget, but even actions on IDA. CTO inherits this class to update node information on CTO in real time by
overriding the preprocess_action(), postprocess_action() and updating_actions() methods. CTO checks a difference
between a pre- and a post-action on IDA and updates the information if it is needed.

For example, CTO observes the ‘MakeName’ action, which is called when a function or a variable name is renamed. Since
there are many kinds of actions, you should check them by executing the get_registered_actions() API on ida_kernwin.py
in advance. Or, you can also check by dumping the first argument of the preprocess_action() method when it is executed.

You can refer to the examples at [4] and [5], or check the CTO source code (see sync_ui.py).

3.3 View_Hooks class

CTO utilizes this class to synchronize a CTO node with the address in IDA View. CTO inherits the class and overrides the
view_loc_changed() method to observe location change events. If the address on IDA View is changed, CTO colours the
corresponding node on CTO. On the other hand, if a different node on CTO is selected, CTO changes the location on IDA
View with the jumpto() API.

You can refer to an example at [6], or check the CTO source code (see sync_ui.py).

3.4. GraphViewer class

Inheriting the GraphViewer class is the simplest way to create a custom graph like CTO. You can create a graph by
overriding the AddNode() method to add a box called a ‘node’, and the AddEdge() method to add an arrow connector
called an ‘edge’.

You can also hook many events on your widget. For example:

• Keyboard events

- OnViewKeydown()

• Mouse events

- OnClick() for click events

- OnDblClick() for double-click events

- OnPopup() for right-click events

- OnHint() for on-mouse-over events for nodes

- OnEdgeHint() for on-mouse-over events for edges

Note that you will need to implement the OnGetText() method to use this class. Although it is not defined, strictly speaking
it is commented out in the super class, but it is mandatory.

You can refer to an example at [6], or check the CTO source code (see cto.py).

3.5 jumpto API

Anyone who has ever scripted on IDA should know about the jumpto() API. And anyone should know the first argument is
an ea. However, how many people know the second argument and the arguments after that? And how many people know
there is one more definition of the jumpto() API? They are very important for handling IDA’s action context. Let me explain
about what the action context is and how it works.

As I mentioned earlier, CTO redirects several shortcut keys to IDA. For example, if you press ‘N’, CTO issues the
‘MakeName’ action to IDA, then IDA shows us a dialog for renaming. However, the dialog depends on the cursor location.

For example, let’s assume you want to rename a function name manually. First, you would click the function name and
press the ‘N’ key. Second, a ‘Rename address’ dialog would show up and you would be able to rename it by inputting a new
function name. However, if a script or a plug-in wants to move the cursor on the function name programmatically, it will be
a slightly different story.

If you use the jumpto() API with the first address of a function, you can go to the function head. And if you press ‘N’
after that, a ‘MakeName’ action will be executed and you may get the ‘Rename address’ dialog like the one shown in
Figure 14.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

11VIRUS BULLETIN CONFERENCE OCTOBER 2021

Figure 14: Rename address dialog.

However, if a keyboard cursor points on a renameable string, IDA would show us a different behaviour. For example,
Figure 15 illustrates IDA showing us a renaming struct member dialog instead of showing a ‘Rename address’ dialog in
spite of the cursor at the first instruction of the function. Let me explain why this occurred.

Before the script execution, the cursor was located in the middle of a line, in Figure 15, that was the offset from the stack
pointer, which is an integer 0x278, on the sixth instruction of the function. After the script execution, the cursor moved to
the first instruction of the function. However, the horizontal location of the cursor was not changed with the jumpto() API
with only the first argument. Therefore, the cursor unexpectedly pointed to ‘arg_0’. As a result, after the ‘N’ key was
pressed, IDA showed a renaming struct member dialog, not the ‘Rename address’ dialog.

Figure 15: IDA changes the behaviour depending on the cursor location.

Thus, IDA will change its behaviour depending on the cursor position, even though the same action is issued. This is the
action context. You will need to pay attention to it. And the two variants of jumpto() APIs handle this.

According to ida_kernwin.py, there are two definitions of jumpto() APIs:

jumpto(ea, opnum=-1, uijmp_flags=0x0001) -> bool

jumpto(custom_viewer, place, x, y) -> bool

The former is the one we usually use. But there is one more important argument. That is the second argument ‘opnum’,
which is an operand number. If you specify an opnum, you can easily tweak the horizontal location of the cursor. This is
useful if you want to move the cursor onto an operand.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

12 VIRUS BULLETIN CONFERENCE OCTOBER 2021

If you want to move the cursor vertically and/or horizontally, you can use the second definition of the API.

For example, a head of the address in a function usually has multiple lines in the same address, as shown in Figure 16.

Figure 16: An address could have multiple lines.

In this case, the first definition of the jumpto() API cannot handle it. On the other hand, the second one can do it. The
second argument of it is an instance of the place_t object, which can be acquired by calling the get_custom_viewer_place()
API. The API also returns x and y of the current cursor position. And place_t also has a member named ‘lineno’, which can
adjust a line number in the same address. You can tweak them and pass it to the second definition of the jumpto() API. Then
you can move wherever you want.

You can also use the custom_viewer_jump() API to move vertically and/or horizontally. You can find an example of how to
use it at [7].

4. TIPS

4.1 Reloading your libraries frequently while developing

If you develop an IDAPython script to be imported by other scripts, and if you modify it, it will not be re-imported by a
script once it is executed unless you reopen the idb. That is not efficient. In that case, use the require() API on ida_idaapi.py.
Then it will get re-imported from a script every time it is executed.

4.2 How to find the cause of a crash on IDAPython

When developing plug-ins running on IDAPython, I frequently find that IDA itself crashes.

To identify the cause of the crash is very difficult because IDA will be terminated before any debug print messages on the
Python side are output. In such cases, you can use the PyExt tool [8].

Figure 17 shows that PyExt found a Python thread on IDA, and the cause of the crash was the viewer_get_gli() API in
ida_graph.py with the crash dump. You can also check its arguments when being crashed by clicking ‘[Frame]’.

5. FUTURE WORK
The following are my objectives for future work on CTO:

• More tool corroboration

• Collecting instructions to be observed

• Implementing a more efficient way to collect paths

• Enhancing the speed

• Improving stability.

6. CONCLUSION
IDA’s scripting and plug-in features are very powerful and they help us enhance our speed of analysis. I hope CTO helps
your analysis and I also hope you will be inspired to develop new scripts or plug-ins in the feature.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

13VIRUS BULLETIN CONFERENCE OCTOBER 2021

REFERENCES
[1] https://www.hex-rays.com/products/ida/support/freefiles/qwingraph_src.zip.

[2] https://github.com/you0708/ida/tree/master/idapython_tools/findcrypt.

[3] https://github.com/fireeye/flare-ida/tree/master/python/flare/ironstrings.

[4] https://github.com/idapython/src/blob/master/examples/uihooks/log_misc_events.py.

[5] https://github.com/idapython/src/blob/master/examples/uihooks/prevent_jump.py.

[6] https://github.com/idapython/src/blob/master/examples/widgets/graphs/custom_graph_with_actions.py.

[7] https://github.com/idapython/src/blob/master/examples/widgets/listings/jump_next_comment.py.

[8] https://github.com/SeanCline/PyExt/releases.

Figure 17: PyExt with IDA’s crash dump.

