% VB2021
localhost

7 - 8 October, 2021 / vblocalhost.com

CTO (CALL TREE OVERVIEWER): YET
ANOTHER FUNCTION CALL TREE VIEWER

Hiroshi Suzuki
Internet Initiative Japan, Japan

www.virusbulletin.com

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

ABSTRACT
CTO (Call Tree Overviewer) is an IDA plug-in designed to display an overview of function call relationships.

When we analyse malware, we tend to lose track of which function we are investigating because there are thousands of
functions in a binary file. We also need to find out what path the function we are investigating took to get to this place, but
if the function location we are looking into is very deep, it can be tedious to follow the path manually. This is why we need
function call trees and path explorers.

CTO is a field-oriented and practical tool that is designed to solve some disadvantages of IDA. It is able to display not only
the function call tree as a graphical user interface including internal function calls and API calls, but also referred strings
and repeatable comments, which are normally input by a user, if necessary, so that, in one view, you can instantly recognize
the relationships between functions and important clues in the currently displayed function.

In addition, it is docked next to the IDA Pro disassembly view by default. If you click on a caller or a callee node on the
tree graph, the address on /DA View will automatically be synchronized with it, and vice versa. By default, static linked
libraries, which it is not commonly necessary to look into, and very deep function calls are collapsed to avoid
overcomplicating the graph — but you can, of course, dig deeper or filter them out. You can find paths between two given
functions as well. Every feature on this tool has its own shortcut key, so that you can handle the tool quickly.

1. MOTIVATION

There are already two features related to function call tree graphs in /DA Pro. One is the ‘Graphs’ or ‘Chart’ feature, and
the other is called ‘Proximity Browser’. Given the existence of these, why did I decide to develop this plug-in? Let me
explain.

The ‘Graphs’ or ‘Chart’ feature does not generate clickable graphs and lacks a path filter feature because it generates a
graph using a modified version of WinGraph'.

B | WinGraph32 - Xrefs to = O x

File View Zoom Move Help

S KA MY 4 POS= BN

|.rci:UUUUTFFQB48FDZQC: dd rva of f_TFFOB48FDEAS ; AddressfFunctions

of f_TFFOE48FD2A2 : dd rva brt_1, rva brt_2, rva SPInitInstance
dd rva SplssModelnitialize

StartAddress

=ub_TFFOE4TCZ190

=ub_TFFOE4TCI1ELID

£ >
86.96% (1,20} 7 nodes, 8 edge segments, 0 crossings

Figure 1: Graphs feature.

Meanwhile, ‘Proximity Browser’ is a more sophisticated feature. You can click nodes and there is a filter feature as well as
a path discovery feature.

! Hex-Rays provides the source code of it at [1].

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

However, it is still not suitable for grasping the whole picture of the relationships because it tends to follow unnecessary
paths and xrefs, and the area per node is large.

Figure 2 shows a comparison of CTO (on the left) with Proximity Browser (on the right) at the same address. As you can
see, Proximity Browser traced unnecessary nodes.

@ cro O & x||[Eoavens o8

[i 5
i soc rrrosseony]

W w =
[oc o |

7]
xrefs tofsub_7FF9647C1ET0 O X
Direction Typ Address Text
= &
L st Trrecircried) [l s Trroericaing L Down p ||sub_TFROGATC2190] A call - sub_TFESGATCIETD
Line Tof2
I
c o= L = 0 = [ec e]

21l sub 7rrosazcie1e) [call sub sFFosa7CIEL

Il cs:Readrile) [call menzey [all

W=
[oc o |

securit’z check_cookie) [calllcaiCraateriten
urity_check_cookic} [Ereateriley

= 1] [

tiet I 1

= —

100.00% (549,2023) (509,522) 00001262 D000TFESE47CIEE2: sub TFESE47CIELO+52 (Synchronized with IDA View-A, Hex View-1)

qword_7FFI64854C48

100,008 (48,-105) (60€,352) 8.0

Figure 2: CTO vs Proximity Browser.

In the graph shown in Figure 3, you can also see that Proximity Browser shows four paths, while /DA’s xrefs window
shows only one xref.

= oA views o8 %

i
@365 bnt_1 rdx, loc_7FF9647ECA23

X

T © ke

% gxre‘ﬁs to StartAddress I O X

Direction Typ Address
5

Line1of 1

OK I Cancel Search Help

B [L+ +

sub_7FF9647C2E70

100.00% (2295,-153) (404,234€) 0002BD40 OC0D07FF9€4T7EC940: StartRAddress (Synchronized with IDA View-R, Hex View-1)

Figure 3: Unnecessary xrefs shown by Proximity Browser.

VIRUS BULLETIN CONFERENCE OCTOBER 2021 3

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

Furthermore, by default Proximity Browser always displays all types of nodes, including strings or global/static variables,
not only functions. Large numbers of nodes makes it difficult to understand the relationships. If we were to dig into several
nodes, the graph would be too complex.

In addition, with Proximity Browser we cannot create a graph to find paths to a pointer on IAT, although it can create paths
from a general function pointer. This was also a motivation for me to create the plug-in.

It was these problems that led me to develop CTO.
2. INTRODUCING CTO

2.1. What is CTO?

CTO is an abbreviation for Call Tree Overviewer, which is mainly designed to create a function call tree.

[T0A ~dpec_dump.SCY.d G User taro\Dekiopdpac_durmp SCY.dl =

X
Ele Edt Jump Seorch View Debugger Options Windows Help Lobeless
O f 2BEe-- B8 B Y 6 @O dcd - w X > O 0o widows debugoer -] el F B £ ©
< N
¢ NI | (NI JII” I
Ubrary functon B Reguer function [Instruction 1] Data [Unexiored [Externalsymbol [Lumina functon
[Frunctions £ T8 €70 Function ister DA View-A, CTO 8 @ Hex View-1 8 ® Structures. 8 &= Enums. 8 @ Imports 8 @ Exports [x]
Name ‘Adiress ~| [T DAvewA o e x||®co o e x
> sub TFROGATCITED HoBATC1 por 184, rad § dwsharetiode
> sub_TFFIG4TC1E00 THoeaTel mov [rspriconsduFlaga 1, 8h 5 '€’ 5 dwFlag
 sub TFFSB4TCIETD. TigsaTCH or ebx, erFrrFEFFh
~ parents nov [rspeiconed:)35 dwe
call sub TFROBTCIEND THO647c2 call cs:Createrilen
call sub TFFOBTCIEND 7HS64TE v rdieax
- i cwp rax, oFFerrrrrFERREREFR
3z oc 7FF9647.
call esCresteFile. TH9647c1 2 Roc TR
-
cl csReadFile TH%6aTCl l_v
call memset ToBaTE
call cs_imp_CloseHandle 796472
Gl seconty check cookie THS64TE2 79, [rspriconHliumberofbytesiead] ; lpNumberOfbyteshcad
g 84, 140h 3 nNumberOfBytesToRead
mov rax, csqword TFRG6... THSSATCT g J Rt
mov rax, csiqword TFF6... Ti9647c1 quord ptr [rsp+1CohsduCreationdisposition], @ ; lpoverlapped|
mov rax csqword 7RG, TISSATCT csiReadFile
mov rax csqword TFF6... THS64Tct x,_eax
mov rax csiqword 7FFO6.. THOSATCT loc 7FFa647C215E
stings
© struct offsets
lea rbp, [rsp-0B0h] Ho6aTC! =
mov [rod al HoBaTCH [rspriCohviumberOTbyteshead], 14700 Ersenaig
add cl 1] THOSATCT Toc. 7FFO647C215E Fu_7rocercaiod
movax ecx bytepte [@-1] 79647
mov (1], al TH%GATCY
wor (it THoBATCH
wor sl e . [rspriConsvar_170] ; void *
wor [Tl dl i or edx, eax e
xor [rsie2l cl 64T mov size
sor [rsi-3] cl %6472 a1l ¥ v
sor (-2l o672 oy rd_7FF964354C0 [E2__zecuriey checkcooid) [Tl eairasterien) [eall cs:eadrild) [call nemscd [all cs:imp Closemandld)
> sub_TFRSGATC2190 96472 pxor
> TEaRaTON onare> ¥ jmov
< 2 oy fremsed]
DOreex [(es Imov
. Graph overview o8 x e]
lmo, _ rhnsacos
100,008 (-28,577) (553,550) 00001262 0000TFESEATCIEE2 : sub_ (Synchronized with Hex||100.008 (-71,-173) (257,676) 8.0
| BT o8 x
Force reloaded. &
Strings disabled S
pytron
v: _idle bown Disk: 2168

Figure 4: CTO (Call Tree Overviewer).

I implemented not only a function call tree creation feature, but several malware analysis techniques, such as creating a
function summary from API calls and strings to rapidly identify the function’s role, finding paths based on the target
address, and creating a tree with least nodes.

This is the current list of elements that CTO can extract from functions for a function summary:
* Function calls / function pointer references
- General functions
- APIs
- Static linked libraries
- Unresolved indirect calls
Global static variables references
» Strings references
(Possible) structure offset references
* Repeatable comments
* Specific general comments (with keywords for third-party tool corroboration)

Of these, only function calls are displayed as nodes by default. This is because, to be a practical tool, I think the most
important point is to keep the graph simple but sufficient. If you want to grasp function relationships, you will not need
such detailed information. That is why, by default, CTO displays only function call related nodes.

On the other hand, if you display all types of nodes and cut other parent and grandchild nodes, you will be able to focus on
a function. Depending on your requirements, CTO can easily hide and unhide additional nodes with a shortcut key.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

[10~ dpsc_dump_SCYall CiUsers\taro\Desktop\dps_dump._SCV.dl
File Edit Jump Search View Debugger Options Windows Help Labeless

LA =T S Bt 6 Vs DO ot F-F e X > O O Lo Windows cetugser -] [P A BB @
3 | I I /] | R L . |

>
J Library function Ml Regular function M Instruction [Data Ml Unexplored [External symbol Ml Lumina function

Functions [£] CTO Function Lister £ IDA View-A, CTO a @ Hex View-1 [x Bl Structures [l Enums [x]

Imports o & Exports

1.

call cs:Process3oFirsti
call esiCreateToolhelp... 79t

Name Add ~ | TS 1DA Vien-A 0 s |00 ———
v Functions
~ 'sub_TFFS647C1000 ot [ed =
Vv parents
call sub TFFO647CT000 7F9¢ loc_7FFO647C1854: 5 lpps
v children lea rdx, [rsp+278h+pe]
call memset oL oy rex rax 5 hsnapshot

[ub_7FFo647ECa3d

#h, Graph overview o8 x| !

199
| —

100.00% (2€3,1068) (407,416) 00000470 0000TFFSE4TC (Synchronize||100.00% (-22,-54) (5€4,456) 4.0

Frocess3zrirst securf

[test eox, eax
call cs:Process32FirstW 7ffot 3z short loc 7FF9647C109D
call _wesiemp T
call cs:Process3ZNextW 7ffot
call cs:_imp_CloseHa... 7ff8t ﬁ
call _security_check c... 7ff8t db 66h, 66h
v gvars nop word ptr [rax+rax+88000002h]
mov rax, czqword TF... TH9(
v stiings L ¥
lea rd String2: "lsass.... 7F19(=
Vv struct_offsets
) WUFF\;;{%DEML dwFlags ;:: i‘ZZ’"”:If’Z’ZfL@: T lea mX sString?) [call cs:_inp Closetiandle) [call cs: createm1helE325naEsmj [call__wesicup) [call cs:Processazrirstr fcall
> sub_7FFOBATCTIED ot lea rox, [rspt27Bhtpe.szExeFile] ; Stringll I i
> sub_TFFOBATCIZT0 ot call _uwcsicnp e | inp_Closeriandle) kr‘estaToulhelE}ZSnaeshoti
> sub_TFFOB4TCIZED 0t test eax, eax
> sub_7FFOB47C1380 ot 5§z short loc_7FF9647C1899
> sub_TFF9647C14F0 iy R |
> sub_TFF9647CI17EQ iy
> sub_7FFIB47C1E00 biEd
~ sub_TFFSBTCIETD U rdx, [rspt27shtee] 5
v parents v mov rox, rbx hs|
< > call cs:Process3Nexth
test eax, eax
[CRregex [Jcs short loc_7FF9647C10|

Output

strings enabled

Disk: 2168

Figure 5: A string as a node.

In Figure 5, you can see CTO shows us the string ‘Isass.exe’ as a node. If you click the node on CTO, IDA View will move
to the address where the string is referred. Then you can see the disassembled code around the address. The function clearly

indicates that it finds the ‘lsass.exe’ process in the process list.

2.2 Function summary

Even if you do not display additional nodes such as strings and global variables, you can still access a function summary as

a node hint by pointing the mouse cursor on a function node.

® x| @ co

L]

sub_7FFOBA7ECE3@ (@x7Tf9647ec838)

[APIs]
Sleep (@x7TT9647ecEf@), Sleep (Ox7ff9647ecoa9)

[Static Linked Libraries]
[free (8x7ff9647ec8db)

[General Internal Calls]

sub_7FF9647ECT7@ (Bx7Tf9647ec8ba), sub_7FFI647C2258 (Bx7Tf9647ec859), sub_JFFI647C2E7@ (@x7ffIed7ecsce),
sub_7FF9647(354@ (@x7Tf9647ec88f), sub_7FF9647C108@ (@x7ff9647ecBaf), sub_7FF9647C35F@ (@x7ffoe47ecsra),
sub 7FFO9647C1800 (@x7ff9647ecBc4), sub 7FFI647EC320 (@x7TfI647ecBad)

[Struct Members]
7ffa6a7ecBat: [rsi+@Bash]
7ff9647ecB878: [rsi+@B88h]
7ff9647ecB885: [rsi+@B38h]
| [7ffo9647ecBaa: [rax+1]
7ffo6avecdfd: [rsi+11Csh]

_I lsub_7FF9647ECE36

cs:Process32Firsti [call

security check cookie}

rocassBZFirsth‘

LsEcur‘ity check cookieh

Figure 6: Node hint.

VIRUS BULLETIN CONFERENCE OCTOBER 2021

5

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

However, a node hint is not clickable. You cannot directly access the information on it. Therefore, I implemented a
‘print hint’ feature as well, which dumps the information to the output window. Then you can access the information by
double-clicking a function name or an address on it.

Output
sub_7FFO647ECB3@ (Bx7FfI647eca38)

[APIs]
S5leep (Bx7ffo9647eci8fe), Sleep (Bx7ff9647ec989)

[Static Linked Libraries]
free (@x7ffosa7ecidb)

[General Internal Calls]

sub 7FF9647EC770 (@x7TT9647ecBba), sub 7FF9647C2250 (@x7ff9647ecB859), sub 7FFO9647C2E7@ (@x7TTO647ecBce),
sub_7FFO647C3540 (8x7TT0647ecBaf), sub JFFOR47CLEG0 (Bx7T9647ec8af), sub FFFI9647C35F@ (@x7TTO647ecdTa),
sub_7FFO647C1800 (8x7TT9647ecBcd), sub JFFOG4TEC320 (@x7TT9647ecd9d)

[Struct Members]
7ffoe47ecBaf: [rsi+8Bash]
7ff9647ecd?@: [rsi+8Bash]
7ff9647ec885: [rsi+8B&3h]
7ff9647ecBaa: [rax+l]
7ffoe47ecsdfd: [rsi+11Csh]

Python ||
AT: idle Down Disk: 21GB

Figure 7: Dumped function summary.

2.3 CTO function lister

You can also use a helper list widget called ‘CTO function lister’ to access a function summary. The widget can be used as
a standalone tool as well, but it is designed to help CTO. You can access the same information as a node hint. You can also
use a regex filter on it to easily find information that you want to know, like which function calls CreateProcessW or which
function accesses a structure offset.

=y
[FlFunctons (1 [E €10 Function Lister 3 DA View-A, CTO B O Hex View-1 (] Structures [x]
Mame Address IDA View-A o0& x| @ co
~ Functions mov rcx, rax ; hSnapshot
¥ sub_7FF9647C1000 TfF9647c1000 call cs:Process32Firsth
v strings test eax, eax
lea rely, String2: "lsass.... Tff9647c1070 jz short loc_7FF9647C189D
~ parents [
call sub_7FF9647C1000 Tff9647ecBafl
~ children rﬁ
call memset 796471037 db G6h, 66h
call cs:CreateToolhelp3.. THO647c1041 nop word ptr [raxtrax+@eeeeeech]
call cs:Process32FirstW Tff9647c105¢
call _wesicmp TFF9647c107c ¥
call cs:Process32NextW 7ff9847c108c W rﬁ
call csi_imp_CleseHan... 7ff9647c10al
call _security_check_c.. Tff9647c10b? loc_7FF9647(1870:
v struct_offsets lea rdx, String2 ; "lsass.exe”
lea ecx, [rdi+2]; dwFlags 7ff9847c103c lea rex, [rsp+278hipe.szExeFile] ; Stringl
v gars ;al: _wcsicmp
. es eax, eax
¢ > i
\ | Oregex Oes
A%, Graph overview O & x | rdx, [rsp+278h+pe] ; 1p|
rex, rbx 3 hsnap
cs:Process32Nexth
eax, eax
short loc_7FF9647C1670
1 T Il T 1
T =TS =& = — ——=
100.00% (208,1140) (46€,204) 00000470 00007FF9€47CL070: (Synchronized with||100.00% (-24,-120) (2|

Figure 8: CTO function lister.

2.4 Keep the graph simple

As I mentioned earlier, Proximity Browser and the Chart feature on /DA show us unnecessary xrefs such as unwind
information and static linked libraries. They increase the number of nodes and make it difficult to understand the
relationships due to the complexity.

In order to keep the graph simple, CTO does not show unnecessary xrefs, although you can check all xrefs with a shortcut key.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

CTO also stops tracing if it finds a function related to a static linked library, although you can still dig into it manually by

expanding a collapsed node.

@ cro o @&/ x

lea r8, StartAddress|

StartAddress

[call sub 7FFosa7ECB30) [call sub 7FFocazECB3Igy

lsub 7FF2647ECE3H

call sub 7FF9647C1008

mp CloseHandle) [call cs:CreateToolhelp325napshot) [call wesicmph [call es:Process32Firstu) call security check cookie [call memset) [call es:Process3oNext]

1osEHandleh EreateTﬂolhelFZSnaEshoth wesicm) [Process32Firsti [security check cookie} Eemseti ProcessBzNex‘tﬁ

100.00% (75,-1€) (538,85) 22.0

Figure 9: Exceeded nodes.

You can see two ‘...’ nodes in Figure 9. They are called the path exceeded nodes. You can double-click them to expand if

you want to dig into them.

In addition, CTO omits many parent nodes not related to the paths to the target address, although you can easily include all

the omitted nodes with a shortcut key. If you compare Figure 10 with Figure 9, you can see many functions under the

parent nodes. CTO omits them by default because if you want to check only paths related to the target function, they are

unnecessary. However, if you want to include them, you can easily display the nodes with a shortcut key.

@ cro o &

a1l sub 7FFoeazFceed | [call sub 7FFasa7Fca

L

¥ Y
etProcAddress sub_7FFI647EC336)
ll=
v
b 7FF9647C35F0) [call sub 7FFo647c3548) [call sub 7FFo647EC326) [call sub 7FFosazciees) [call es:Sleep) [call cs:5leep) E
]] [[
r y h
c35F§ [sub_7FFosa7c3sad [sub 7FFosa7EC320) sub_7FF9647CL

cs: _imp CloseHandle} [call wesicmp) call cs:CreateToolhelp32snapshoty [call security check cookief [call cs:Process32Firstid [call memset} [call cs:Process

Process32First Process32Next

wcsicmﬂ [createToolhelp3asnapshoth [security check cookid}
100.00% (1229,-37) (56€4,381) 0.0

Figure 10: Showing child nodes in parent functions.

VIRUS BULLETIN CONFERENCE OCTOBER 2021

7

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

CTO has several options such as ‘Go to start node’ and ‘Jump to a node’ in order to avoid to getting lost in a graph with
many nodes. The former can immediately go back to the start node that you chose when you created the CTO graph. The
latter can find a node from a list using a keyword such as a partial function name, a partial address and a node type, and so
on, and jump to the node.

You can also get the opposite side of a node by double-clicking the edge, which is an arrow shape, like in /DA View.
And you can get next-to-node information by placing the cursor on an arrow or a node since the hint will also be
displayed.

2.5 Synchronizing with IDA View
To be a field-oriented tool, I think usability is important. Let me explain.

For usability, CTO will be docked next to /DA disassembly view (or /DA View) by default. You can check code around the
address in IDA View as soon as you click a node corresponding to the address on CTO and vice versa, since CTO and /DA
will be synchronized with each other.

2.6 Callee-Caller mode

As you have seen in CTO’s graphs so far, you can check each caller address in a function as well as the callee functions.
Caller addresses help you rapidly understand what role their parent function has. Of course, you can omit caller nodes if
they are unnecessary, as in Figure 11. Then the graph will be simpler. You can toggle the modes with a shortcut key.

lbnt 2} [startaddress)

sub 7FFI647ECE38

|_imp CloseHandleh ICreateToolhelpHSnapshoth Lwcsicmpﬁ |Pr"oce5532Fir'st'n‘| |_svzcur‘i‘t).|r check co-okieh hemsetl |Proce5532Next'n‘|

Figure 11: Pure function call graph.

2.7 Shortcuts redirecting to IDA

You can access several IDA shortcuts, which are often likely to be used while you are focusing CTO’s window, for
example, renaming a function name, checking xrefs, applying a structure to an offset and so on, by redirecting the key input
to IDA. You do not have to click on the /DA screen every time you want to use them.

2.8 Function call paths graph

Although IDA’s Proximity Browser can create a function call paths graph, it cannot create a graph based on an API pointer
on the import table like CreateFileA or CreateProcessW. Since it is very important for reverse engineers to check important
APIs, making such graphs was one of my motivations to create the new tool.

CTO creates a call paths graph as a subgraph in a new tab so that you can keep the current graph you are looking into while
you are checking other paths or nodes. Figure 12 shows a graph based on CreateFileW.

2.9 Third-party tool corroboration

CTO collects specific comments. If a tool outputs its result as a comment, CTO can recognize it. Currently, it collects the
outputs of the tools below:

e findcrypt.py [2]
e ironstrings [3]

I will extend this in the future.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER SUZUKI

=] cTo n @ CTO_7ffa649410d8 a8

lea rg, StartAddress

[call sub 7FFosa7Ecsze] | [call sub 7FFosa7eEce3e
| |

sub 7FF9647ECE3A

[call sub 7FFosa7c2196) [call sub 7FF9647C219¢) [call sub 7FFa647C2256)
| |

sub 7FF9647(2196

v [
[call sub 7FFosazciE1d) [call sub 7FFosazciEie) [call sub 7FF96a7C2316)
1 | |

sub 7FF9647C2250

[sub 7FFosa7ciere [sub 7FFosa7c231d} [_initconout}

|call cs:cr‘eateFile\ﬁ |call cs:cr‘eateFilelﬁ |call cs:createFile\rﬁ
| J

100.00% (—-€5,-82) (€14,305) 110

Figure 12: Find paths to CreateFileW.

In Figure 13 you can see that CTO recognizes a stack string identified by ironstrings as a node.

IDA View-A, CTO [x e Hex View-1 B @ Structures 8 =2 Enums [x] Imports g & Exports

=) ma view-a o & x|@co O & x
TRov [rbptisohtvar_10], rax
mov rbx, rex
lea rex, [rsp+288h+var_21E] ; void *
wor edi, edi
xor edx, edx ; val
mov r8d, 286h 5 Size
mov [rsp+28@h+Buffer], di
call memset
xor ede, edx 5 val
mov rgd, 2e6h 5 Size
mov rox, rbx 5 void *
call memset
lea rox, [rsp2sehebuffer] ; LpBuffer
mov edx, 103h 3 usi A
call cs:GetiindowsDirectoryi
mov eax, 6Eh ; 'n'
wov Trsprsaaman 35cl. ax el e]
mov eax, 64h ; "d’
lea r8, Format 5 "sKs\\%s"
mov [rsp+288h+var_226], ax
lea rax, [rsp+28eh+var_238]
mov edx, 102h 5 BufferCount v
moy IePusshiEngsel.irax [nov_[rspt28ehivar 238], 736960h; stackstring: “mscmain.sdb’} 2Ll menzed) eIl nens
lea rax, [rspt28ehtvar_250]
mov rex, rbx ; Buffer
rov rsp+286hevar_250], 41005Ch ; stackstring: '\AppPatch’
mov Ersg?s?%&vari%ﬂ%, 760070h % o
mov [rsp+28eh+var_248], 618@58h
mov [rsp+28Bh+var_268], rax
mov [rsp+28ehivar_244], 630074h
v [rsp+2sehivar_24], 68h ; 'h’
mov [rsp+280h+var_238], 730060h ; stackstring: 'mscmain.sdb’
mov [rsp+280h+var_234], 6D@063h
mov [rsp+28Bh+var_238], 698061h
mov [rsp+28eh+var_224], 73802Eh
mov [rspt2sehtvar_224], 62h ; ‘b’
call _snwprintf
xor eax, eax

100.00% (-170,550) (782,320) 00000SSE 0000TFESE47CLISE: sub TEFSE4TCLOD0+CE (Synchronized with Hex View-1) 100.008 (200,-150) (233,50 7.0

Figure 13: Tool corroboration.

3. HOW CTO WORKS, INSIDE CTO

3.1 Core structures of CTO

In order to synchronize with IDA View, CTO utilizes two hooks:
¢ UI hooks (UI_Hooks class)
¢ View hooks (View_Hooks class)

UI hooks and view hooks are in ida_kernwin.py.

VIRUS BULLETIN CONFERENCE OCTOBER 2021

9

10

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

CTO also inherits the graph viewer class (GraphViewer class) in ida_graph.py.

Since IDA’s GUI-related APIs are in these two modules, if you want to create a GUI-based IDA plug-in, you should look
into them first.

3.2 Ul_Hooks class

You can catch all UI events, which are called ‘actions’ by Hex-Rays, by inheriting this class. You can observe actions not
only on your widget, but even actions on /DA. CTO inherits this class to update node information on CTO in real time by
overriding the preprocess_action(), postprocess_action() and updating_actions() methods. CTO checks a difference
between a pre- and a post-action on /DA and updates the information if it is needed.

For example, CTO observes the ‘MakeName’ action, which is called when a function or a variable name is renamed. Since
there are many kinds of actions, you should check them by executing the get_registered_actions() API on ida_kernwin.py
in advance. Or, you can also check by dumping the first argument of the preprocess_action() method when it is executed.

You can refer to the examples at [4] and [5], or check the CTO source code (see sync_ui.py).

3.3 View_Hooks class

CTO utilizes this class to synchronize a CTO node with the address in /DA View. CTO inherits the class and overrides the
view_loc_changed() method to observe location change events. If the address on IDA View is changed, CTO colours the
corresponding node on CTO. On the other hand, if a different node on CTO is selected, CTO changes the location on /DA
View with the jumpto() APL

You can refer to an example at [6], or check the CTO source code (see sync_ui.py).

3.4. GraphViewer class

Inheriting the GraphViewer class is the simplest way to create a custom graph like CTO. You can create a graph by
overriding the AddNode() method to add a box called a ‘node’, and the AddEdge() method to add an arrow connector
called an ‘edge’.

You can also hook many events on your widget. For example:
* Keyboard events
- OnViewKeydown()
e Mouse events
- OnClick() for click events
- OnDDbIClick() for double-click events
- OnPopup() for right-click events
- OnHint() for on-mouse-over events for nodes
- OnEdgeHint() for on-mouse-over events for edges

Note that you will need to implement the OnGetText() method to use this class. Although it is not defined, strictly speaking
it is commented out in the super class, but it is mandatory.

You can refer to an example at [6], or check the CTO source code (see cto.py).

3.5 jumpto API

Anyone who has ever scripted on /DA should know about the jumpto() API. And anyone should know the first argument is
an ea. However, how many people know the second argument and the arguments after that? And how many people know
there is one more definition of the jumpto() API? They are very important for handling /DA’s action context. Let me explain
about what the action context is and how it works.

As I mentioned earlier, CTO redirects several shortcut keys to IDA. For example, if you press ‘N’, CTO issues the
‘MakeName’ action to /DA, then IDA shows us a dialog for renaming. However, the dialog depends on the cursor location.

For example, let’s assume you want to rename a function name manually. First, you would click the function name and
press the ‘N’ key. Second, a ‘Rename address’ dialog would show up and you would be able to rename it by inputting a new
function name. However, if a script or a plug-in wants to move the cursor on the function name programmatically, it will be
a slightly different story.

If you use the jumpto() API with the first address of a function, you can go to the function head. And if you press ‘N’
after that, a ‘MakeName’ action will be executed and you may get the ‘Rename address’ dialog like the one shown in
Figure 14.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

@ Rename address X

Address: Ox7FF9647C1000

(WElCRIsub 7FF9647C1000 v

D Local name

Include in name list
D Public name

D Autogenerated name
D Weak name

D Create name anyway

Figure 14: Rename address dialog.

However, if a keyboard cursor points on a renameable string, /DA would show us a different behaviour. For example,
Figure 15 illustrates /DA showing us a renaming struct member dialog instead of showing a ‘Rename address’ dialog in
spite of the cursor at the first instruction of the function. Let me explain why this occurred.

Before the script execution, the cursor was located in the middle of a line, in Figure 15, that was the offset from the stack
pointer, which is an integer 0x278, on the sixth instruction of the function. After the script execution, the cursor moved to
the first instruction of the function. However, the horizontal location of the cursor was not changed with the jumpto() API
with only the first argument. Therefore, the cursor unexpectedly pointed to ‘arg_0’. As a result, after the ‘N’ key was
pressed, IDA showed a renaming struct member dialog, not the ‘Rename address’ dialog.

|an~:ump es:'nothing ss:'nothineg ds: data fs:'nothine gs:nothing I

Q Please enter a string X

Enter struct member name ~|

var_18= gword ptr -18h
arg_©= qword ptr 8
= i After
mov [r'sp_, rbx
push rdi Execute script
sub rsp, 278h
mov rax, cs:qword_7FF26485383€ gpippet list Please enter script body
xor rax, rsp__Before - - -
mov [r-sp\,rar-_la], rax Name 1 }mport :_Lda_ker-nwm
lea rcx, [Psp+278h+pe.th32Proc (i petayit snippet 2 import ida_funcs
xor edx, edx 3 val B 3
mov r8d, 23eh ; Size 4/ea = here()
xor edi, edi 5f = ida_funcs.get_func(ea)
mov gword ptr [rsp+278h+pe.dws 5. L.
call memset 7/ida_kernwin.jumpto(f.start_ea)
lea ecx, [rdi+2] ; dwFlags
xor edx, edx 5 th32Proc Lline 1 of 1 e Erlmre®
;2‘:&1 EE).{SFﬁ:EETOOIhelpSZSnapshc Scripting language Python ~ Tab size

3) 00000400 00007FF9647C1000: sub_TFF9647C]
= Run Export Import | =

Figure 15: IDA changes the behaviour depending on the cursor location.

Thus, IDA will change its behaviour depending on the cursor position, even though the same action is issued. This is the
action context. You will need to pay attention to it. And the two variants of jumpto() APIs handle this.
According to ida_kernwin.py, there are two definitions of jumpto() APIs:

jumpto(ea, opnum=-1, uijmp_flags=0x0001) -> bool

jumpto(custom_viewer, place, x, y) -> bool

The former is the one we usually use. But there is one more important argument. That is the second argument ‘opnum’,
which is an operand number. If you specify an opnum, you can easily tweak the horizontal location of the cursor. This is
useful if you want to move the cursor onto an operand.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

If you want to move the cursor vertically and/or horizontally, you can use the second definition of the API.

For example, a head of the address in a function usually has multiple lines in the same address, as shown in Figure 16.

IDAView-A B [@ HexView-1 @ A Structures a] Enums B Imports [x] = Exports [x]
.text j6e667FF9647C1660
.text §0POO7FF9647C1008|; ======================sosmmosossosoossoooossooossooosssssoosssoosooooooosas
.text jeeee7FF9647C1000
.text J0OBB7FF9647C1088]; Segment type: Pure code
.text J000O7FF9647C1000); Segment permissions: Read/Execute
.text j6@@07FF9647C1000 | _text segment para public *CODE' use64
.text j6ee07FF9647C1660 assume cs:_text
.textjeeee7FF9647C1000 ;org 7FF9647C1eeeh
.text Jeeee7FF9647C1000 assume es:nothing, ss:nothing, ds:_data, fs:nothing, gs:nothing
.text Jeeeo7FF9647C1000
.text §00007FF9647C1000|; =============== SUB RO U T I N E ==========================oosooooooooos

.text j6@007FF9647C1000
.text §6e007FF9647C1000
.text Je@007FF9647C1060 | sub_7FF9647C10080 proc near ; CODE XREF: sub_7FF9647EC83@:loc_7FF9647ECBAFip
.textjeeee7FFo647C1000
.text §0007FFO647C1000 | pe

.text 00007FF9647C1000|var_18

PROCESSENTRY32W ptr -258h
qword ptr -18h

.text jeeeo7FFo647C1e08|arg 0 qword ptr 8

.text jeeee7FF9647C1000

.text J6@0O7FF9647C1000 mov [rsp+arg_©], rbx
.text:@0807FF9647C1005 push rdi
.text:@0007FF9647C1006 sub rsp, 27eh

Figure 16: An address could have multiple lines.

In this case, the first definition of the jumpto() API cannot handle it. On the other hand, the second one can do it. The
second argument of it is an instance of the place_t object, which can be acquired by calling the get_custom_viewer_place()
API. The API also returns x and y of the current cursor position. And place_t also has a member named ‘lineno’, which can
adjust a line number in the same address. You can tweak them and pass it to the second definition of the jumpto() API. Then
you can move wherever you want.

You can also use the custom_viewer_jump() API to move vertically and/or horizontally. You can find an example of how to
use it at [7].

4. TIPS

4.1 Reloading your libraries frequently while developing

If you develop an IDAPython script to be imported by other scripts, and if you modify it, it will not be re-imported by a
script once it is executed unless you reopen the idb. That is not efficient. In that case, use the require() API on ida_idaapi.py.
Then it will get re-imported from a script every time it is executed.

4.2 How to find the cause of a crash on IDAPython
When developing plug-ins running on IDAPython, I frequently find that IDA itself crashes.

To identify the cause of the crash is very difficult because /DA will be terminated before any debug print messages on the
Python side are output. In such cases, you can use the PyExt tool [8].

Figure 17 shows that PyExt found a Python thread on IDA, and the cause of the crash was the viewer_get_gli() API in
ida_graph.py with the crash dump. You can also check its arguments when being crashed by clicking ‘[Frame]’.

5. FUTURE WORK
The following are my objectives for future work on CTO:
* More tool corroboration
¢ Collecting instructions to be observed
* Implementing a more efficient way to collect paths
* Enhancing the speed

* Improving stability.

6. CONCLUSION

IDA’s scripting and plug-in features are very powerful and they help us enhance our speed of analysis. I hope CTO helps
your analysis and I also hope you will be inspired to develop new scripts or plug-ins in the feature.

CTO (CALL TREE OVERVIEWER): YET ANOTHER FUNCTION CALL TREE VIEWER

@ Dump C\Users\taro\Desktop\ida-20210311-110739-5868.dmp - WinDbg:10.0.19041.1 AMD&4 - O x
File Edit View Debug Window Help

& e P e e C S e B R G OIS SR AR e

Command
P ~
0:000: lpysymfix
Current symbol path: srvxC:“symbols*https: “m=sdl microsoft.com-download-symbols:C:“Users“taro“Applata~Llocal~Prograns“Fv
Adding symbol server to path. ..
xxxxuxxxxxxxx Path validabion SURMATY XEEREXREXEEXRERE
Fesponse Time {(m=) Tlocation
Deferred srv*C ~=ynbols*https: ~“n=dl . nicrosoft . con download-symbols
C:wOzersstaroshppDat s~ Local~Frograns~FPython~Fython38
Deferred srv*http:/“pythonsynbols. sdcline . con-symbols
Hew symbol path: srvs*C:synbols*https: . rmnedl nicrosoft com-dovnload-synbols;C ~Uzersstaro~Apphata~local~Frograns~Fython
Loading svnbols.
0:000: ~*=lpystack
Thread gk
File "C.“Program Files~IDA Pro 7.5-python>3-ids graph.py". line 2867, in viewer get gli I
File "C: “zers~taroc~ApplData~Roamning~Hez—Rays~ID4 Prowpluginstctoscto.py”, line 1746, in get widget offset
Frame Globals
File "C: “Izers~taroc~ipplata~Roamning~Hez-Rays~ID4 Prowpluginstctoscto.py”, line 1770, in get node of fsst
Frame Globals
File "C. “Users“tarc~Applats Roaning“Hez—Reavys~IDA Prospluginshctoswcto.py", line 1782, in is node in camvas
Frame Globals
File "C. “Users“tarc~Applats Roaning“Hez—Reays~IDA Provpluginshctoswcto.py", line 295, in update widget b ea
Frame Globals
File "C “l=ers“tarco+ippDataEoaming“Hez—Ray=~ID4 Proswpluginstctoscto.py", line 288, in update widget b
Frame Globals
File "C “l=zers~taro~AppData~FEoamning Hez—Ray=~ID4 Prowpluginstctoscto.py”, line 273, in view loc changed
Frams Globals
File "C.~Program Files~IDA Pro 7 Shpython“3“ida graph.py", line 3170, in Show
Frame Globals
File "C ~Uzers~tarcebppDataRosmningwHex-RaysnIDd Prowpluginssctoscto.py”, line 481, in show
Frams Globals
File "C “UzerstarchpplataBEosming Hex-Rays~IDA Prowpluginssctoscto.py”, line 3045, in show graph
Frams Globals
File "C. ~UsersstarcnippDatasRoaning Hes-RaysnIDA Provpluginshctoscto.py”, line 310, in init
Frame Globals=
File "C “zerstarctApplatatRoomingsHex-RaysIDA Prowpluginstctoscto.py”, line 445, in activate
Frame Globals=
Thread 1:
Thread does not contain any Python frames.
Thread 2:
Thread doss not contain any Python frames.
Thread 3: v
< >
j0:000> |

Ln0,Col 0 Sys :C\User Proc 000:16ec Thrd 000:d54 ASM OVR CAPS NUM

Figure 17: PyExt with IDA’s crash dump.

REFERENCES

(1]
(2]
(3]
[4]
(5]
(6]
(7]
(8]

https://www.hex-rays.com/products/ida/support/freefiles/qwingraph_src.zip.
https://github.com/you0708/ida/tree/master/idapython_tools/findcrypt.
https://github.com/fireeye/flare-ida/tree/master/python/flare/ironstrings.
https://github.com/idapython/src/blob/master/examples/uihooks/log_misc_events.py.
https://github.com/idapython/src/blob/master/examples/uihooks/prevent_jump.py.
https://github.com/idapython/src/blob/master/examples/widgets/graphs/custom_graph_with_actions.py.
https://github.com/idapython/src/blob/master/examples/widgets/listings/jump_next_comment.py.
https://github.com/SeanCline/PyExt/releases.

13

