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ABSTRACT
Apple’s new M1 systems offer a myriad of benefits ... for both macOS users and, apparently, malware authors too!

In this paper we detail the first malicious programs compiled to natively target Apple Silicon (M1/arm64), focusing on 
methods of analysis.

We’ll start with a few foundation topics, such as methods of identifying native M1 code (which will aid us when hunting 
for M1 malware), as well as some introductory arm64 reversing concepts.

With an uncovered corpus of malware compiled to run natively on M1, we’ll spend the remainder of the paper 
demonstrating effective analysis techniques, including many specific to the analysis arm64 code on macOS.

Armed with this information and analysis techniques, you’ll be a proficient macOS M1 malware analyst! 

INTRODUCTION
As the popularity of macOS continues to sky rocket, so too does the prevalence of malware targeting Apple’s desktop OS. 

Though the reasons for this lock-step increase are rather nuanced, it’s undeniable that more macOS systems simply means 
more targets. Malware authors are an opportunistic bunch, and as such, have dedicated ever more time and resources 
towards crafting malware capable of infecting macOS systems. So much so that (by some metrics), Macs outpaced 
Windows in terms of the number of threats detected per endpoint [1]:

Figure 1: Detections per endpoint (source: Malwarebytes [1]).

Interesting, though somewhat unsurprising, is the fact that many recent examples of malware capable of infecting macOS
are not wholly new. Instead, driven by the increased prevalence of macOS, malware authors have simply ported over their 
Windows (or Linux) malware. Recent examples include malware such as Dacls, IPStorm, and GravityRAT. All now run 
natively on macOS. 

Of course Mac-specific malware also continues to abound. 

We’ve noted that, arguably, the driving factor of the increase in Mac malware is the increase in Mac systems. And the 
number of such systems has increased massively in recent years, including an industry-leading 49% increase in Q4 2020 [2].

Figure 2: A significant increase in Mac shipments [2]. 

The reasons for Mac’s increased popularity can be explained by factors such as greater acceptance in the enterprise, an ever 
increasing remote workforce, and last but not least the introduction of Apple’s incredible M1 chip [3]. 
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Figure 3: M1 chip drives increased Mac adoption [3]. 

Let’s briefly dive into the latter, as it’s directly relevant to the core of this research paper.

Released in 2020, Apple’s M1 (a.k.a. ‘Apple Silicon’) is ‘an ARM-based system on a chip’ [4].

Apple notes that:

‘As a system on a chip (SoC), M1 combines numerous powerful technologies into a single chip, and features a unified 
memory architecture for dramatically improved performance and efficiency.’ [5]

Figure 4: Apple M1 chip (source: MacRumors/Apple).

Due to the combination of its computational power and efficiency (largely due to its integrated design and ARM-based 
CPU instruction set), it has understandably proved massively popular with consumers and enterprise users alike. 

In the context of this research paper, the most notable aspect of the M1 is that it’s an ARM-based SoC, with the CPU 
supporting the arm64 (AArch64) instruction set architecture (ISA). Thus, in order for a binary to run natively on an M1 
system, it must be compiled as a Mach-O 64-bit arm64 binary …which means developers must (re)compile their applications.

‘But wait!’, you might say, ‘I know I can still run many older applications on my shiny new M1 system!’. And you are 
correct. Apple (wisely) realized that backwards compatibility was essential to ensure widespread customer adoption of their 
new M1 Mac systems, and thus released Rosetta(2).

As Apple notes:

‘Rosetta is a translation process that allows users to run apps that contain x86_64 instructions on Apple silicon.

‘To the user, Rosetta is mostly transparent. If an executable contains only Intel instructions, macOS automatically 
launches Rosetta and begins the translation process. When translation finishes, the system launches the translated 
executable in place of the original. However, the translation process takes time, so users might perceive that translated 
apps launch or run more slowly at times.’ [6]

As summarized in the quotation above, Rosetta(2) will translate x86_64 (Intel) instructions transparently into native arm64 
instructions, so older applications can run (almost) seamlessly on M1 systems.

However, there are two points to note:

1. Non-arm64 code will not run natively on M1 systems (the CPU only ‘speaks’ arm64) – it has to be translated first, 
via Rosetta(2).

2. As arm64 code does not have to be translated, applications (re)compiled for M1 will run natively, and thus faster, 
and won’t be subject to any of the issues or nuances of Rosetta.

Based on the fact that native (arm64) applications run faster (as they avoid the need for runtime translation), and that 
Rosetta at the time of its release had a few bugs (that may prevent certain older apps from running), developers are wise to 
(re)compile their applications for M1!
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Figure 5: Lost in translation: a Rosetta(2) crash.

Due to the benefits of native M1 code, it is no surprise that both developers and malware authors are shipping binaries 
compiled natively to run on Apple Silicon. 

Note:

We use several terms somewhat interchangeably in the remainder of this paper, including M1, Apple Silicon and 
arm64, when referring to malware compiled to run natively on this new architecture. 

Technically, as noted, M1 and Apple Silicon refer to the SoC, while arm64 is the instruction set supported by the CPU 
component (of the SoC). 

AND WHY THIS ALL MATTERS (TO MALWARE ANALYSTS)
Shortly, we’ll discuss the discovery of the first malware compiled to natively target Apple Silicon. This confirmed that 
malicious adversaries are indeed crafting multi-architecture applications, so their code will run natively on M1 systems.

The creation of such malicious software is notable for two main reasons. First (and unsurprisingly), this illustrates that 
malicious code continues to evolve in direct response to both hardware and software changes coming out of Cupertino. 
There are a myriad of benefits to distributing native arm64 binaries, so why would malware authors resist?

Secondly, and more worryingly, (static) analysis tools or anti-virus engines may struggle with arm64 binaries. In a simple 
experiment, we separated out the x86_64 and arm64 binaries from a malicious application (that was compiled as a universal 
binary, meaning it contained multiple architecture-specific binaries). 

Both the (now separated) binaries were then uploaded to VirusTotal and scanned. In theory, both binaries should be 
detected at the same rate, as they both contain the same logically equivalent malicious code.

Figure 6: Detections dropped for an arm64 version. 
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Unfortunately, detections of the arm64 version dropped over 10% when compared to the standalone x86_64 version. 
Several industry-leading AV engines (that readily detected the x86_64 version) failed to flag the malicious arm64 binary.

It is surmised that, in this case, the detection signatures were based on the Intel-specific instructions (opcodes). As the 
ARM-based malware has completely different instructions, any signature based on architecture-specific instructions may 
fail. 

Moreover, some of the AV engines that (correctly) flagged both the x86_64 and arm64 binaries as malicious presented 
differing names for their detections of what was logically the same file.

One AV engine with conflicting names was Microsoft, which named the architecture-specific files Trojan:MacOS/Bitrep.B 
and Trojan:Script/Wacatac.C!ml. Such naming conflicts may indicate inconsistencies when processing the differing binary 
file formats. Such conflicts may lead to confusion in malware identifications and reporting, which could have various 
real-world consequences. 

Finally, though it’s likely that malware compiled to run natively on Apple Silicon will be distributed as universal binaries 
(meaning they’ll ship with Intel code as well) for the time being, this won’t always be the case. At some point in the future, 
for example once M1 systems are more prevalent, we’ll come across macOS malware solely containing arm64 code. 

As malware analysts the presence of only arm64 code may present some challenges – most notably the fact that it 
disassembles not into the familiar Intel-based instructions, but rather ARM (arm64). The good news, though, is that armed 
(ha!) with a foundational understanding of this instruction set, we’ll be back in business, and analysing M1 malware will be 
a breeze. 

ANALYSING M1 BINARIES
In this section of the paper, we’ll discuss various topics related to the analysis of malware designed to run natively on Apple 
Silicon. 

First, how does one ascertain if a binary contains code capable of running natively on an M1 system? Well, for starters it 
will contain arm64 code. One simple way to determine the code contained in a binary is via macOS’s built-in file tool 
(the otool and lipo utilities can be used as well). Using this tool, we can examine a binary to see if it contains compiled 
arm64 code.

Let’s look at Objective-See’s firewall, LuLu:

% fi le LuLu.app/Contents/MacOS/LuLu
Mach-O universal binary with 2 architectures: 
 [arm64:Mach-O 64-bit executable arm64]
 [x86_64:Mach-O 64-bit executable x86_64] 

Listing 1: Using the file utility to examine a universal binary.

As LuLu has been rebuilt to run natively on M1 systems, we can see it contains arm64 code (‘Mach-O 64-bit executable 
arm64’). 

In order to maintain compatibility with older, non-M1 systems, LuLu also contains native Intel (x86_64) code. 

Note that a Mach-O binary contains code and data for one architecture only. In order to create a single binary that can 
execute on systems with different architectures (e.g. Intel 64-bit and Apple Silicon arm64), developers can wrap multiple 
Mach-O binaries in a universal, or fat, binary. 

When a universal binary is run, the operating system automatically selects the architecture compatible with the host. For 
example, when LuLu is run on a 64-bit Intel system, the x86_64 Mach-O version of the binary (which, remember is 
embedded directly within the universal binary) is run. On an M1 system, the arm64 Mach-O binary is executed. 

HUNTING FOR MALICIOUS M1 BINARIES 
When Apple released the M1 chip (in late 2020), it seemed reasonable to assume malware authors would shortly 
(re)compile their malicious creations to be natively compatible with this new architecture. 

In early February 2021, I decided to hunt for such malware as none had yet been discovered or publicly disclosed.

Since I’m an independent security researcher, I don’t have access to private or proprietary malware collections or feeds. 
Luckily, VirusTotal (www.virustotal.com) is generous enough to offer (free) researcher accounts. So my search began there. 

VirusTotal supports a wide range of search modifiers, which are essential when hunting through the vast collection for 
malicious native M1 code. Such search modifiers allow one to constrain search queries by binary type, architecture(s), and 
much more. 

To search for binaries natively compatible with Apple Silicon, I leverage the following search modifiers:
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• macho (type): The file is a Mach-O (Apple) executable.

• arm (tag): The file contains ARM instructions.

• 64bits (tag): The file contains 64-bit code (recall Apple Silicon supports arm64).

• multi-arch (tag): The file contains support for multiple architectures (i.e. it’s a universal/fat binary). As M1 systems are 
not yet widespread, it was assumed that malware targeting M1 would be universally compiled, to also retain native 
compatibility with Intel-based systems. 

Unfortunately, constructing a search query with these search modifiers will also return (many) universal iOS binaries. As I 
was hunting solely for macOS binaries, I also leveraged the ‘engines’ search modifier along with ‘iOS’ and a NOT (to invert 
the logic). 

My initial search therefore was: type:macho tag:arm tag:64bits tag:multi-arch NOT engines:IOS

The good news was that this did identify universal macOS binaries in VirusTotal’s corpus that contained arm64 code. The 
bad news was that it detected over 72,000 files. 

As I was hunting for (any) M1 malware, I took a shortcut and added a search modifier that constrained the query to only 
detect files that have been flagged as malicious by at least two anti-virus engines. 

Since I was searching for universal binaries (based on the assumption that attackers would want their malicious creations to 
also run on existing Intel-based Apple hardware), it seemed reasonable to expect that current AV signatures may detect at 
least the Intel-based code. And, yes, this meant the query would miss brand new (currently undetected) malware, but my 
goal was simply to find any malicious software capable of running natively on Apple Silicon. 

The search query therefore became: type:macho tag:arm tag:64bits tag:multi-arch NOT engines:IOS positives:2+

This returned only 72 candidate files.

Figure 7: Candidate macOS arm64 malware.

Though several were false positives or misclassified iOS binaries, I quickly come across a promising candidate: a file 
named GoSearch22 (SHA-256: b94e5666d0afc1fa49923c7a7faaa664f51f0581ec0192a08218d68fb079f3cf).

Figure 8: A likely macOS arm64 malware specimen.

Could this be the first publicly known instance of malicious code compiled to run natively on Apple Silicon? 

TRIAGING GOSEARCH22
First, let’s confirm that this is indeed a macOS (vs. iOS) binary, which can run natively on M1 systems:

% $ fi le GoSearch 
Mach-O universal binary with 2 architectures: 
 [arm64:Mach-O 64-bit executable arm64]
 [x86_64:Mach-O 64-bit executable x86_64] 

Listing 2: Getting confirmation. 
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So far it looks good! It’s a universal (fat) Mach-O binary, that supports both Intel (x86_64) and Apple Silicon (arm64).

And is it malicious? Over 20 trusted AV engines (correctly) thought so! They largely identified it as an instance of the 
prevalent, yet rather insidious, ‘Pirrit’ adware.

Figure 9: AV engines largely identified the file as an instance of the ‘Pirrit’ adware.

Moreover, at the time of uncovering this sample, Apple had (already) revoked its signature, indicating that they thought it 
was malicious as well:

Figure 10: A revoked certificate.

But wait, how is this malware ‘new’ if it’s so well known (by over 20 AV companies)? Valid question! What is new is the 
fact that this malicious sample contains an embedded Mach-O binary compiled to run natively on Apple Silicon (M1). All 
previous malware, including this specimen, only contained Intel code, and thus would not run natively on M1 hardware.  

However, it is still readily detectable for two reasons: 

1. As a universal binary, it contains an Intel (x86_64) Mach-O binary, that the AV industry has (likely) already seen. 
As such, those signatures likely hit, and thus flag the entire universal binary as malicious. 

2. The new arm64 binary is functionally equivalent to the Intel version, and thus old signatures developed to detect the 
Intel version have (some) success against the new M1 binary. 
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Note:

We noted earlier in this paper that detections of the arm64 version were 10% lower than the Intel version. Thus 
(some) existing AV signatures clearly need to be updated. 

I had set out to find the first instance of malware designed to run natively on Apple Silicon. And hooray(?), I was able to 
successfully uncover such a specimen. 

Now, let’s detail exactly how to analyse such binaries. 

A (BRIEF) INTRODUCTION TO REVERSING APPLE SILICON BINARIES
Before diving into an analysis of the M1 version of the GoSearch22 binary, we need to discuss some foundational arm64 
reversing concepts. Here, we discuss registers, and various instructions of AArch64. It should be noted that this discussion 
is far from comprehensive, and focuses on information relevant to reversing (malicious) arm64 binaries (for example, we 
don’t discuss floating point or SIMD concepts).

Note:

This section of the paper leans heavily upon existing arm64 reversing tutorials and papers including:

• arm64 Assembly Crash Course [7]

• How to Read ARM64 Assembly Language [8]

• Introduction To Arm Assembly Basics [9]

• Modern Arm Assembly Language Programming [10]

The reader interested in gaining a more comprehensive understanding of the topic should consult these sources. 

Of course ARM’s official document can always be consulted, as it is the definitive source: 

• Arm Architecture Reference Manual Armv8, for Armv8-A architecture profile [11]

By definition, Mach-O binaries are ‘binary’, meaning that, while readily readable by computers, their compiled binary code 
is not designed to be directly readable by humans.

As such, we must leverage a tool that can understand the compiled binary machine-level code, and translate it back into 
something more readable: assembly code! This process is known as disassembling.

Assembly is a low-level programming language that is translated directly to binary instructions. This direct translation 
means that any binary code within a compiled binary can (later) be directly converted back into assembly. This process can 
occur irrespective of the programming language used by the developer (or malware author).

Note:

There are various versions of assembly, each compatible with various CPUs (Intel, MIPs, ARM, etc.).

Since this paper is focused on analysing arm64 macOS malware, we’ll focus on AArch64, the 64-bit execution state of 
ARMv8 instruction set architecture (ISA). This is the native ISA of the M1 chip.  

REGISTERS 
Registers are temporary storage ‘slots’ on the CPU that can referenced by name. In some sense, they are synonymous to 
variables in higher-level programming languages [8]. 

AArch64 includes 31 64-bit registers that can be utilized for ‘general purposes’. These registers are named X0 – X30 
(though their lower 32 bits can be referred to via W0 – W30). It should be noted that several of these general registers have 
specific uses, especially in the context of function calls. Referred to as the ‘calling convention’, this is discussed below, as it 
is very relevant in the context of analysing arm64 binaries. 

Besides the 31 general purpose registers, AArch64 also includes a stack pointer register (SP), and a program counter 
register (PC). The former points to the ‘top’ of the stack (though the stack grows downwards in memory). The latter, PC, 
contains the address of the instructi on that is currently executing [10]. Finally, a virtual register named XZR is interpreted 
as the value 0 [12]. 

CALLING CONVENTION
When a function (or method) call is made, there are strict rules (articulated in an Application Binary Interface (ABI)) that 
govern how registers may be utilized. For example, which registers are used to pass parameters, and which are used to 
return a value from the function. 
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As these rules are applied consistently, it allows us as malware analysts to understand exactly how a call is being made. For 
example, for a method that takes a single parameter, the value of this parameter (the argument) will always be passed in via 
the  X0 register prior to the call. 

• Registers X0 – X7: first eight arguments (more? … via the stack)

• Register X0/X1: return value (64, 128 bits)

• Register X29: frame pointer (to support stack frames)

• Register X30: link register (contains the return address) 

(Source: [7].)

PROCESSOR STATE (PSTATE)
Unlike other ISAs there is not a dedicated flags or status register. Instead, AArch64 includes an ‘abstract entity’, called the 
PSTATE, that contains, amongst other things, conditions flags for negative, zero, carry and overflow. As we will see below, 
various instructions can (indirectly) update these flags, or leverage them in conditional branches [10].

AARCH64 INSTRUCTIONS
Assembly instructions map to a specific sequence of bytes that instructs the CPU to perform an operation [10]. Such 
instructions begin with a mnemonic, which is a human-readable abbreviation of the operation that the instructions perform. 
For example, the add mnemonic maps to the binary code to perform, you guessed it, an addition operation. The majority of 
arm instructions also contain one or more operands. These operands specify either the registers, values, or memory that the 
instruction uses [10]. Sticking with our add instruction, it generally takes three operands including the destination register, 
source register(s), and/or an immediate. 

Operands can be classified into three types:

• Immediate: A constant value (e.g. 42)

• Register: One of the 31 general purpose registers

• Memory: One of the 31 general purpose registers that points to a value in memory. 

Generally, the first register is the destination register, while the remaining registers are source. One notable exception is the 
store instruction (str, discussed below).

Let’s now look at examples of the aforementioned operand types, (still) sticking with the add instruction. First, a simple 
example that makes use of both a register and an immediate operand:

add x0, x1, 42

When executed, this instruction will cause the CPU to add the immediate value 42 to the value in the x1 register. The result 
will be saved in the x0 register. If you’re familiar with a higher-level language such as C, this will be analogous to the 
statement: x0 = x1 + 42;

It should be noted that one might see ‘variations’ on instruction mnemonics depending on nuances of the instruction. For 
example, the humble mov (move) instruction has several variants, including:

• movz (move + zero): move a 16-bit value into a register, while all other bits (in the register) are set to zero. 

• movk (move + keep): move a 16-bit value into a register at a specified offset, while leaving the other bits in the 
register unmodified.  

• movn (move + negated): move a negated (optionally shifted) 16-bit value into a register. 

Though it may help to memorize all of these, often (in the context of reversing malware) it suffices simply to understand 
that they are variations of the mov instruction. If more details are needed, the ARM instruction guide can always be 
consulted! 

Before we discuss memory operands, we need to introduce memory address modes. 

Unlike some other architectures, (such as Intel), Arm utilizes what is referred to as a ‘load-store’ architecture which 
separates instructions into those that can access memory and those that cannot. The former includes only the ldr (load 
register) and str (store register) instructions, while all others fall into the category of the latter.

‘ARM uses a load-store model for memory access which means that only load/store (LDR and STR) instructions can 
access memory. 

…on ARM data must be moved from memory into registers before being operated on’ [13].

As noted in [13], this means that if a value in memory is to be incremented, this requires:
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1. Loading the value from memory into a register (via the ldr instruction).

2. Incrementing the value (in the register).

3. Storing the value from the register, back into memory (via the str instruction). 

As its name implies, the ldr instruction loads a value from memory into a register. The following example shows how to 
load a 64-bit value from the memory address pointed to by the x0 register into the x1 register:

ldr x1, [x0]

Note that, as normal, the first operand (the x1 register) is the destination register. The source register is x0. The brackets 
around it indicate that it contains a memory address that should be dereferenced (to load the value). In C, an analogous 
statement would be x1 = *x0; 

On the other hand, the str (store register) will store a value from a register into specified memory address. This instruction 
is somewhat unique, as the first operand is the source register, while the second is the destination. (Recall that for other 
instructions this is flipped: the first is destination, and remaining are the source(s).)

The following example shows how to store a 64-bit value from the x1 register into the memory address pointed to by the x0 
register: 

str x1, [x0]

Again, the brackets indicate that the register (x0) contains a memory address, which is where the value of x1 should be 
stored. In C, an analogous statement would be *x0 = x1;

While we are on the topic of memory accesses, we should note that there are several different ‘addressing modes’ that can 
be leveraged by the load and store instructions. We’ve already seen the ‘base register’ address mode, in the above ldr and 
str examples. This mode uses a single (base) register that contains the memory address. In both the previous load and store 
examples the xO register was the base.

Building on this, an offset can also be specified, either via an immediate or another register, such as in the following 
example(s):

ldr x1, [x0, 42]

ldr x1, [x0, x2]

In each example, a value is loaded from memory into the x1 register. Also in both, the x0 register is the base register, which 
contains the (base) memory address. In the first example, the immediate value of 42 is added as an offset to the base 
register (x0) before the memory is dereferenced and its value loaded into x1. In the second example, instead of an 
immediate value, a register value (x2) is the offset added to the base register. 

We should note that there are other, more complex addressing schemes referred to as ‘pre-indexed’ and ‘post-indexed’, 
which modify the base register either before (pre) or after (post) its dereference. For a detailed and illustrative discussion of 
these addressing modes, see [13]. 

Finally, the ‘PC relative’ addressing mode can be used to compute memory addresses relative (plus or minus) to the 
instruction pointer (PC). 

Before we wrap up the discussion of the load and store instructions, it is important to discuss their variations. For 
example, to load or store a 16-bit value, you’ll see the ldrh or srth instructions used respectively. Also, variations exist 
for sign extensions. For example, the ldrsw load instruction will load and sign-extend a 32-bit value (into a 64-bit 
register).

CONDITIONS

When studying malware understanding comparison logic is often quite important. For example, malware may invoke a 
function that contains logic to ascertain if it’s executing within a virtual machine or under the watchful eye of a debugger. 
Often such functions will return a boolean value (YES/NO). A comparison may then be performed on such a result, which 
may trigger logic such as a premature exit. Such premature exits are not conducive to analysis, and thus must be identified 
(so that they can be overcome). 

In arm64, we noted that the processor state (PSTATE) ‘register’ contains various conditional flags. Various instructions can 
(indirectly) set these flags, such as the cmp (compare) instruction. ‘Variations’ of other instructions can do so as well. For 
example, the adds (addition, setting flags) will perform an addition and also updates the PSTATE flags. [10]

Once the flags have been set, subsequent instructions can act upon them using condition codes [7]. Such condition codes 
include eq (equal), ne (not equal), lt (less than), gt (greater than), and are often found as suffixes on instructions. For 
example, the b.gt instruction will branch (jump) if the result of a previous instruction (such as a cmp), is greater than. 

Let’s now look a bit closer at branch instructions. 
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BRANCHES
Branch instructions can alter the control flow of a program. The b instruction will instruct the CPU to unconditionally 
transfer control to a specified label or address (relative to the PC). As we just saw, it can also be used with a conditional 
code, which will only cause the transfer of control if the condition is met. 

In your reversing adventures, you might also encounter the cbz (compare branch zero) or cbnz (compare branch not zero) 
instructions, which simply combine a compare and a conditional branch instruction. 

Finally, the bl (branch with link) instruction will ‘copy the address of the next instruction into LR’, the link register (x30) 
[14]. This instruction facilitates function calls. When said function wants to return it simply invokes the ret (return) 
instruction. This branches (jumps) to the address that was stored in the link register (by the bl instruction).

REVERSING HELLOWORLD 
Armed with an elementary understanding of arm64, let’s now reverse a quintessential ‘Hello World’ binary. Specifically, 
the one generated by Apple’s Xcode:

int main(int argc, const char * argv[]) {

 @autoreleasepool {

  // insert code here...

  NSLog(@"Hello, World!");

 }

  return 0;

} 

Listing 3: Hello World!

First, we compile this code via Xcode, or directly via clang (clang main.m -fmodules -o helloWorld). 

Opening it in a disassembler (I use Hopper [15]) generates the following disassembly: 

main:

sub sp, sp, #0x30

stp x29, x30, [sp, #0x20]

add x29, sp, #0x20

movz  w8, #0x0

stur wzr, [x29, var_4]

stur w0, [x29, var_8]

str x1, [sp, #0x20 + var_10]

str w8, [sp, #0x20 + var_14]

bl objc_autoreleasePoolPush

adrp x9, #0x0000000100004000

add x9, x9, #0x8 ; 0x100004008@PAGEOFF, @"Hello, World!"

str x0, [sp, #0x20 + var_20]

mov x0, x9

bl NSLog

ldr x0, [sp, #0x20 + var_20]

bl objc_autoreleasePoolPop

ldr w0, [sp, #0x20 + var_14]

ldp x29, x30, [sp, #0x20]

add sp, sp, #0x30

ret

Listing 4: Hello World! disassembled. 

Let’s triage this code, discussing relevant instructions. 

First, a function prologue, where the code subtracts 0x30 from the stack pointer to make local space for the function. Then, 
via the stp instruction, it saves the x29 and x30 registers on the stack. 

A few instructions later, the code invokes the objc_autoreleasePoolPush function by means of the bl (branch with link) 
instruction. (The @autoreleasepool in the source code gets compiled into a call to objc_autoreleasePoolPush and later 
objc_autoreleasePoolPop). Recall that before control is transferred via a bl instruction the link register (x30) is updated 
with the next instruction, so the function knows where to return. The objc_autoreleasePoolPush returns a pointer to a pool 
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object that must be passed to the objc_autoreleasePoolPop function. Recall that x0 contains the return value of a function, 
the instruction str x0, [sp, #0x20 + var_20], therefore stores (saves) this returned pointer into a local variable. 

Next, the code initializes the x0 register, with the address of the ‘Hello World!’ string. This is accomplished by first 
calculating the address of the string (via the adrp (address of a relative page) and add instructions), then moving the 
address into the x0 register. (Recall that when a function call is made, the x0 register holds the first argument.) The NSLog 
function is then invoked via the bl instruction, to print out ‘Hello World!’.

After this call, the code invokes the objc_autoreleasePoolPop function to exit the autorelease pool. As the objc_
autoreleasePoolPop function takes a pool object (to release), this must be moved into the x0 register. This is accomplished 
via the ldr x0, [sp, #0x20 + var_20] instruction, which loads it from the stack (where it was previously stored). 

The main function’s prologue is then executed. This initializes the return register w0 (as the main function returns a 32-bit 
integer), via the value from the stack. Looking back in the disassembly, we see that the variable was initialized with zero 
(movz w8, #0x0, str w8, [sp, #0x20 + var_14]). Once the return register has been set, the function restores the x29 and x30 
registers and (re)adjusts the stack. Finally, the ret instruction is executed to return. 

Hooray, we’ve just reverse-engineered a full arm64 (Apple Silicon) binary!

PRACTICAL M1 MALWARE ANALYSIS

If you were slightly daunted by the previous section, that’s OK. In the context of malware analysis, more often than not you 
won’t have analyse the malware instruction by instruction. 

Via dynamic analysis tools and decompiler logic, only in rare cases will you have to dive into the actual disassembly.

Case in point, Hopper’s decompiler can reconstruct the Hello World! source from the compiled (arm64) binary, rather 
impressively: 

int main(int arg0, int arg1) {
 var_20 = objc_autoreleasePoolPush();
 NSLog(@"Hello, World!");
 objc_autoreleasePoolPop(var_20);
 return 0x0;
}

Listing 5: Hello World! decompiled. 

The takeaway from the output of the decompiler should not be ‘I don’t have to learn arm64’, but rather that often a 
fundamental understanding of arm64 will suffice. 

Still, when analysing more complex malware (that contains anti-analysis logic and obfuscations), analysing the disassembly 
instructions may be the only option.

It is often trivial, via dynamic analysis tools, to fairly comprehensively analyse a malicious sample. For example, say 
you’re interested in determining how a malware specimen persists. Often, you can simply execute it in conjunction with a 
process and file monitor. Such monitors will often quickly reveal exactly how the malware persistently installs itself. 

Of course, malware authors are aware of such analysis tactics and thus may implement anti-analysis logic to thwart our 
analysis efforts. Such logic often seeks to ascertain if the malware is running on an analysis machine and/or is being 
debugged. If the malware determines that it is likely being watched, it will prematurely exit or simply idle. 

Thus, as malware analysts, we must both identify and then circumvent any such anti-analysis logic so that analysis can 
continue. Often this requires an in-depth analysis of the malware disassembled code. 

As an illustrative example, let’s take a dive into GoSearch22, specifically focusing on its anti-analysis logic.

GoSearch22 is an example of malicious code that implements various anti-analysis logic. If we run it in a virtual machine 
or within a debugger it simply terminates. This hinders our abilities to understand how it persists and the capabilities of its 
payload. 

But not to worry! Armed with our foundational knowledge of arm64, let’s dig into the sample with the goal of uncovering 
such anti-analysis logic. Such an exercise will allow us to apply (and expand) our arm64 reversing skills as well as provide 
a means to overcome GoSearch22’s anti-analysis logic so our analysis can continue. 

Note:

Many of GoSearch22’s anti-analysis techniques can be found in other (unrelated) malware samples. Thus gaining an 
understanding of such anti-analysis techniques will prove useful even when analysing other malicious code. 
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Note:

Dynamic analysis of potentially malicious binaries should always be done within an isolated virtual machine, or 
better yet, on a separate analysis machine. We opt for the latter, largely because virtualization of M1 binaries is not 
yet supported (for example in VMware Fusion). 

GOSEARCH22: ANTI-DEBUGGING LOGIC
When executing GoSearch22 in a debugger (lldb), it quickly terminates:

% lldb GoSearch22.app 
(lldb) target create "GoSearch22.app"
Current executable set to '/Users/user/Downloads/GoSearch22.app' (arm64).

(lldb) c
Process 654 resuming
Process 654 exited with status = 45 (0x0000002d) 

Listing 6: GoSearch22 exits when executed in a debugger.

The exit code, 45 (0x2d), is telling. Experienced Mac malware analysts will recognize this status code as the results of the 
debuggee invoking the ptrace system call (or API), with the PT_DENY_ATTACH flag. As its name implies the 
PT_DENY_ATTACH flag instructs the operating system to prevent the debuggee from being debugged.

Malware, of course, would rather not be debugged, so it’s unsurprising that GoSearch22 implements such anti-analysis 
logic. It is rather trivial to bypass this anti-analysis technique in a debugger simply by skipping over the ptrace call. Of 
course, this requires first locating where the malware invokes ptrace. 

Looking at GoSearch22’s disassembly reveals massive numbers of junk instructions aimed at complicating static analysis 
(such as locating anti-analysis logic). Moreover, there appears to be a call to the user-mode ptrace API. Thus, we assume 
the malware is instead making a direct call to the ptrace system call (number 0x1a). The arm64 assembly instruction to 
make a system call is svc (supervisor cal). 

Searching through the disassembly for an svc instruction with a parameter of ptrace (0x1a), we find the responsible 
anti-debugging code at 0x00000001000541e8: 

0x00000001000541e8 movz x0, #0x1a

0x00000001000541ec movz x1, #0x1f

0x00000001000541f0 movz  x2, #0x0

0x00000001000541f4 movz  x3, #0x0

0x00000001000541f8 movz  x16, #0x0

0x00000001000541fc svc #0x80

0x0000000100054200 movz  w11, #0x6b8f

Listing 7: Anti-debugging logic (via a ptrace system call).

First, the x0 register is initialized with 0x1a, the system call number for ptrace (SYS_ptrace). The x1 register is set to 0x1f, 
the value of PT_DENY_ATTACH. The other two arguments, x2 and x3, are set to zero. Then at 0x00000001000541fc, the 
supervisor call is made. As mentioned earlier, this attempts to prevent debugging or, if the malware is being debugged, will 
cause the malware to terminate with exit code 45 (0x2d). 

Now we’ve detected the location of the anti-debugging logic, in our debugging session we can simply skip the call. How? 
By setting a breakpoint on the svc instruction, and then once hit, changing the address of the program counter (pc register) 
to the next instruction:

(lldb) reg write $pc 0x100054200

Listing 8: Modifying the program counter register, to skip the problematic ptrace call. 

As the svc instruction is skipped, it will not be executed, resulting in the anti-debugging logic being avoided! 

…but wait, unfortunately there is more. 

Even with the anti-debugging check bypassed, if the malware is allowed to continue execution (in the debugger), it still 
terminates prematurely. Turns out there is more anti-debugging logic. 

Spread amongst the junk instructions, we find a call to the sysctl API: 
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0x0000000100054fcc ldur x8, [x29, var_B8]

0x0000000100054fd0 movz w9, #0x288

0x0000000100054fd4 str x9, [x8]

0x0000000100054fd8 ldur x0, [x29, var_C8]

0x0000000100054fdc ldur x3, [x29, var_B8]

0x0000000100054fe0 ldur x2, [x29, var_A8]

0x0000000100054fe4 orr w1, wzr, #0x4

0x0000000100054fe8 movz x4, #0x0

0x0000000100054fec movz x5, #0x0                                 

0x0000000100054ff0 bl sysctl

Listing 9: Anti-debugging logic (via a sysctl).

The sysctl API can be invoked in order to retrieve various information, including details about the state of the current 
process. Such details include a flag that will be set if the program is being debugged. This is illustrated in the following C 
code: 

int name[4];
struct kinfo_proc processInfo;
size_t size = sizeof(processInfo);

name[0] = CTL_KERN;
name[1] = KERN_PROC;
name[2] = KERN_PROC_PID;
name[3] = getpid();

sysctl(name, 4, &processInfo, &size, NULL, 0);

if(0 != (info.kp_proc.p_flag & P_TRACED))
{
 //debugger detected 
}

Listing 10: PoC anti-debugging logic (via a sysctl).

In the arm64 code the sysctl API is invoked at 0x0000000100054ff0 via the bl (branch with link). The two previous 
instructions initialize the fifth and sixth arguments to zero. Continuing backwards, at 0x0000000100054fe4, the second 
argument is set to 4. As this argument is a 32-bit integer, the w1 register (the 32-bit part of the x1 register) is used. It is set 
to zero by bitwise OR’ing the 32-bit zero register with 4. 

The first, third and fourth (x0, x2, x3) arguments are all initialized via the ldur (load unscaled register) instruction. 

The first argument (x0) is a pointer to the ‘name’ array. In a debugger we can print out its values (via the x/4wx command): 

(lldb) x/4wx $x0
0x16fe86de0: 0x00000001 0x0000000e 0x00000001 0x00000475 

Listing 11: Displaying the name array passed to the sysctl API.

The values correspond to CTL_KERN (0x1), KERN_PROC, (0xe), KERN_PROC_PID (0x1), and the current process id of 
the malware. 

The third argument (x2) is an out pointer to a kinfo_proc structure. Once the sysctl function is executed it will contain the 
requested details: the information about the currently running process. 

Finally, the fourth argument (x3) is initialized with the size of the kinfo_proc structure, or 0x288. This initialization takes 
four instructions: 

0x0000000100054fcc ldur  x8, [x29, var_B8]

0x0000000100054fd0 movz w9, #0x288

0x0000000100054fd4 str  x9, [x8]

0x0000000100054fd8 ldur  x0, [x29, var_C8]

...

0x0000000100054fdc ldur  x3, [x29, var_B8]

Listing 12: The kinfo_proc structure initialization.
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First, the ldur instruction loads the address of the size variable (var_B8) in the x8 register. Then the size of the kinfo_proc 
structure (0x288) is moved into the w9 register via the movz instruction. The str (store) instruction then stores this value 
(in x9) into the address stored in the x8 register. Finally, this value is loaded into the x3 register via the ldur instruction, to 
complete the argument initialization.

After the sysctl call is made, the malware examines the now populated kinfo_proc structure. Specifically, it checks if the 
p_flag flag has the P_TRACED bit set. If this bit is set, the malware knows it’s being debugged and will (prematurely) 
exit.

The following instructions extract the p_flag member from the populated kinfo_proc structure (whose address was copied 
into the ‘var_90’ variable): 

0x000000010005478c  ldur x8, [x29, var_90]

0x0000000100054790  ldr  w8, [x8, #0x20]

0x0000000100054794  stur w8, [x29, var_88]

Listing 13: The p_flag extraction from the kinfo_proc structure.

First, the address of the kinfo_proc structure is loaded into the x8 register (via the ldur instruction). Then the 32-bit p_flag 
member, which is found at offset 0x20 within the structure, is loaded into the w8 register (via the ldr instruction). This 
value is then stored in the var_88 variable via the stur (store unscaled register) command. 

Later, the malware checks if the p_flags flag has the P_TRACED bit set (P_TRACED is the constant 0x00000800, 
meaning it has the 11th bit set to 0x1). In a debugging session, we can confirm that indeed, as expected, the p_flags flag 
has the P_TRACED bit set:

(lldb) p/t $w8

0b00000000000000000101100000000110
Listing 14: Confirming the p_flags is indeed set.

Here are the arm64 instructions that are executed to extract the P_TRACED bit: 

0x0000000100055428 ldur w8, [x29, var_88] 

0x000000010005542c ubfx w8, w8, #0xb, #0x1

0x0000000100055430 sturb w8, [x29, var_81]

Listing 15: The P_TRACED bit extraction from the p_flag member of the kinfo_proc structure.

In the previous instructions, the malware first loads the saved p_flag value (var_88) into the w8 register via the ldur 
instruction. Then it executes the ubfx (unsigned bit field extract) instruction to extract the P_TRACED bit. The ubfx 
instruction takes a destination register (w8), a source register (w8), the bitfield index (0xb, or 11d), and the width (1, for a 
single bit). In other words, it’s grabbing the bitfield at offset 11 from the p_flag. This is the P_TRACED bit. Via the sturb 
(store unscaled register byte) instruction, it then saves the extracted P_TRACED bit. Later, it checks (compares) to make 
sure the P_TRACE bit is not set:

0x00000001000550ac ldurb w8, [x29, var_81]

0x00000001000550b0 cmp w8, #0x0 

...

Listing 16: Checking the extracted P_TRACED bit.

If the P_TRACED bit is set, the malware (prematurely) exits, as this indicates the malware is being debugged. 

To bypass this second anti-debugging check, we can (once again) just skip the problematic call. Specially, once the 
malware is about to execute the branch instruction to invoke sysctl, we can change the program counter to the next 
instruction. As the sysctl call is not made, the kinfo_proc structure remains uninitialized (with zeros), meaning any checks 
on the P_TRACED flag will return 0 (false). 

The final two anti-analysis checks the malware performs involve checking if it is running within a virtual machine or if SIP 
is disabled. Both are likely indicators of an analysis environment. For example, malware analysts often disable SIP on an 
analysis system to facilitate debugging and memory inspection. 

Both these checks are performed via the shell. Specifically, the malware executes various shell commands and parses their 
output. If either check fails, the malware prematurely exits which may thwart our analysis efforts. 

For example, the ‘am I running in a VM?’ check involves executing the following, which looks for various artifacts found 
within a visual machine: 
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/bin/sh -c -c,

readonly VM_LIST="VirtualBox\|Oracle\|VMware\|Parallels\|qemu";is_hwmodel_vm()
{ ! sysctl -n hw.model|grep "Mac">/dev/null;};is_ram_vm(){(($(($(sysctl -n hw.memsize)/ 
1073741824))<4));};is_ped_vm(){ local -r ped=$(ioreg -rd1 -c IOPlatformExpertDevice);echo 
"${ped}"|grep -e "board-id" -e "product-name" -e "model"|grep -qi "${VM_LIST}"||echo 
"${ped}"|grep "manufacturer"|grep -v "Apple">/dev/null;};is_vendor_name_vm(){ ioreg -l|grep 
-e "Manufacturer" -e "Vendor Name"|grep -qi "${VM_LIST}";};is_hw_data_vm(){ system_profiler 
SPHardwareDataType 2>&1 /dev/null|grep -e "Model Identifier"|grep -qi "${VM_LIST}";};is_vm()
{ is_hwmodel_vm||is_ram_vm||is_ped_vm||is_vendor_name_vm||is_hw_data_vm;};main(){ is_vm&&echo 
1||echo 0;};main "${@}

Listing 17: An anti-VM check.

As we’re performing analysis on native hardware, this doesn’t impact our analysis. On the other hand, the SIP check does 
impact our analysis (as SIP was disabled on the analysis machine). Let’s take a closer at this check – both to understand the 
logic, but more importantly as a great illustrative example of reversing (and understanding) an Objective-C method call. 

In order to check if the system upon which it is executing has SIP disabled, the malware executes the following via the 
shell, /bin/sh:

-c command -v csrutil > /dev/null && csrutil status | grep -v "enabled" > /dev/null && 
echo 1 || echo 0 

Listing 18: An ‘is SIP enabled’ check.

If SIP is enabled, this will echo 0, whereas if it is disabled the command will echo 1. 

The malware executes this command at 0x00000001000538dc, via a blr (branch with link to register): 

0x00000001000538d0 ldr  x8, [sp, #0x190 + var_120]
0x00000001000538d4 ldr  x0, [sp, #0x190 + var_100]
0x00000001000538d8 ldr  x1, [sp, #0x190 + var_F8]
0x00000001000538dc blr  x8

Listing 19: Execution of the SIP-detection logic.

The branch destination is held in the x8 register. Prior to the call, various parameters are prepared via the ldr instruction.

Due to the malware’s use of obfuscation, it is not readily apparent from static analysis what address the x8 register points 
to. However, as we’ve thwarted the malware’s anti-debugging logic, we can trivially ascertain this via a debugger. 

(lldb) x/i $pc
-> 0x1000538dc: 0xd63f0100 blr x8

(lldb) reg read $x8 
x8 = 0x0000000193a5f160  libobjc.A.dylib`objc_msgSend

Listing 20: Leveraging a debugger to determine a branch target.

Ah, it’s a call to the objc_msgSend function. In short, when you (or a malware author) invokes an Objective-C method call, 
the compiler will route it through the objc_msgSend function.

As detailed in Apple’s developer documentation, the first argument is an object that the method is invoked upon. The 
second argument is the name of the method. Then, any arguments that the method takes: 

Figure 11: objc_msgSend documentation .
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In our debugging session we can examine the value of these arguments to determine the object, method, and any arguments. 

(lldb) po $x0
<NSConcreteTask: 0x1058306c0>

(lldb) x/s $x1
0x1e9fd4fae: "launch"

Listing 21: Leveraging a debugger to determine arguments.

First, we use the print object (po) debugger command to print out the object. It’s an instance of an NSConcreteTask. To 
determine the method being invoked, we print out the string (x/s) that’s in the second argument. It’s the launch method, 
which, as its name implies, will launch (execute) a task. 

Due to the introspective nature of Objective-C, we can query the task object, for example to extract the path of its 
command and any arguments. Recall that the task object is in the x0 register, as it’s the first parameter for the objc_
msgSend function.

(lldb) po [$x0 launchPath]
/bin/sh

(lldb) po [$x0 arguments]
<__NSArrayI 0x10580dfd0>(
-c,
command -v csrutil > /dev/null && csrutil status | grep -v "enabled" > /dev/null && echo 
1 || echo 0 
)

Listing 22: Leveraging a debugger to introspect an NSTask object.

To summarize, the malware is performing a ‘is SIP disabled?’ check as a means to determine if it’s likely running in an 
analysis environment. This is accomplished by invoking the launch method of the NSTask (NSConcreteTask) class, 
which gets routed through the objc_msgSend function. By introspecting the task’s launch path and arguments we can 
uncover the specific command (and command arguments) that the malware was executing to perform this anti-analysis 
check. With this information, we can also trivially side-step this anti-analysis logic (for example by skipping over the 
method call). 

This wraps up the malware’s anti-analysis logic, which, once identified, is trivial to bypass and allows continued analysis to 
commence! Such continued analysis is beyond the scope of this paper, largely as traditional (read: non-arm64 specific) 
dynamic analysis techniques suffice. For example, via tools such as file and process monitor, one can observe the malware 
attempting to install itself as a malicious Safari extension. Such an extension aims to subvert users’ browsing sessions by 
engaging in traditional adware-type behaviours.

Note:

Since our discovery of GoSearch22, a handful of other native arm64 malware has been discovered and analysed. 
These include, but are not limited to:

• Clipping Silver Sparrow’s wings: Outing macOS malware before it takes flight [16]

• OSX/Hydromac: New Mac adware, leaked from a flashcards app [17]

Moreover, re-running our query on VirusTotal (type:macho tag:arm tag:64bits tag:multi-arch NOT engines:IOS 
positives:2+) reveals a myriad of new malicious specimens, natively compiled for Apple Silicon. The interested reader 
should investigate :) 

CONCLUSION

Macs continue to surge in popularity, in part driven by the introduction of the impressive M1 chip. By uncovering malicious 
code built to run natively on this ARM-based architecture, we confirmed that malware authors have been quick to adapt. 
And thus so too must we.

As malware built to run natively on M1 systems will disassemble to arm64, it’s imperative to possess an understanding of 
this instruction set. This paper sought to provide such an understanding though an introduction to arm64 and its instruction 
set. Moreover, by reverse-engineering the first natively compatible M1 malware, we have provided a practical example of 
analysing arm64 disassembly. 

Armed with a solid comprehension of the topics presented in this paper, you’re now well on the way to becoming a 
proficient analyst of arm64 malware targeting macOS!
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